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Abstract
Deep learning-based methods have recently been
established as fast and accurate surrogate simu-
lators for optical multilayer thin film structures.
However, existing methods only work for lim-
ited types of structures with different material ar-
rangements, preventing their applications towards
diverse and universal structures. Here, we pro-
pose the Opto-Layer (OL) Transformer to act
as a universal surrogate simulator for enormous
types of structures. Combined with the technique
of structure serialization, our model can predict
accurate reflection and transmission spectra for
up to 1025 different multilayer structures, while
still achieving a six-fold degradation in simula-
tion time compared to physical solvers. Further
investigation reveals that the general learning abil-
ity comes from the fact that our model first learns
the physical embeddings and then uses the self-
attention mechanism to capture the hidden rela-
tionship of light-matter interaction between each
layer.

1. Introduction
Optical multilayer thin film structure (shorten as “multilayer
structure”) is a type of photonic structure that consists of
multiple layers of different materials stacking on top of
each other, with thickness typically ranging from tens of
nanometers to a few micrometers. Because of the ease of
fabrication, multilayer structures have been widely used in
both scientific and industrial applications, including struc-
tural color (Wang et al., 2023), photovoltaic (Liu et al.,
2013), display devices (Zheludev, 2007), etc. To enable
these applications, researchers need to first understand the
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physical relationship between a multilayer structure and
corresponding optical properties, e.g., transmission and re-
flection. Traditional simulation methods including Transfer
Matrix Methods (TMM) (Byrnes, 2016) and Rigorous Cou-
pled Wave Analysis (RCWA) (Hugonin & Lalanne, 2021)
use matrix algebra to analytically or semi-analytically cal-
culate the reflection and transmission coefficients. How-
ever, these physics-based simulation methods are usually
time-consuming. In addition, a new simulation needs to be
performed from scratch when facing a different structure.
Thus, the development of a fast simulation method becomes
fundamental for multilayer structures applications.

Recently, researchers have started to use deep learning to ac-
celerate the simulation process by leveraging the strong gen-
eralization ability, including Multi-Layer Perceptron (MLP)
(Liu et al., 2018), MLP-Mixer (Deng et al., 2021), and trans-
former (Chen et al., 2023). Although obtaining the training
dataset through physical simulation can take some time,
such an investment is a one-time payment. Once trained,
these neural networks are able to capture the general map-
ping from the space of structures to the space of optical
properties, serving as a fast and computationally efficient
surrogate model to replace physical simulations.

However, many existing surrogate models can only ex-
pedite the simulation of structures with fixed material ar-
rangements, e.g., the three-layer structure of Ag/SiO2/Ag
in (Deng et al., 2021) and the six-layer structure of
MgF2/SiO2/Al2O2/TiO2/Si/Ge in (Chen et al., 2023). This
is because materials have dispersion, making them only
accessible through categorical representations, instead of
continuous variables. A universal method that can pre-
dict and simulate optical properties for diverse structures
with different numbers of layers and varied materials ar-
rangements is in great need. In this paper, we propose the
Opto-Layer Transformer (OL-Transformer) as a universal
surrogate model by leveraging the strong learning and gen-
eralization abilities of transformer. After training on a large
dataset, our model can work as a fast and authentic surrogate
solver for multilayer structures with up to 20 layers and 18
different materials, corresponding to a total of 1820 ∼ 1025

different structures (this can be further expanded as our
model is highly scalable). In addition, compared to physical



OL-Transformer: A Fast and Universal Surrogate Simulator for Optical Multilayer Thin Film Structures

simulators, our model also achieves a six-fold degradation
in simulation time and can go to a ∼3800-fold speedup
when using batch calculation.

2. Related Works
Deep learning-based surrogate models have been used in
many scientific applications to speed up the simulation
and prediction, including molecular properties prediction
(Broberg et al., 2022), predicting the dynamics of physical
phenomenon (Geneva & Zabaras, 2022), and meteorologi-
cal predictions (Khorrami et al., 2021). They are also widely
used for solving inverse problems, which seek to recover the
causes given the observed results, including nanophotonic
inverse design (Jiang et al., 2021), chemical material inverse
design (Fu et al., 2023), etc. Our work aims to solve the
simulation of optical multilayer structures, with the goal of
speeding up the prediction of optical properties.

There has been some work that leverages learned knowledge
to deal with different structures. For example, (Qu et al.,
2019) used transfer learning to assist in the simulation of
a 10-layer structure after learning on the 8-layer structure.
(Kaya & Hajimirza, 2019) used transfer learning to help
the optimization of a multi-layer solar cell. Meta-learning
has also been applied to generalize the learning on differ-
ent applications, including detector simulations and design
(Zhang et al., 2020), PINN-based 1D arc simulation (Zhong
et al., 2023), hydrogen storage materials simulations and
design (Sun et al., 2021), etc. However, these methods usu-
ally require adaptations to new datasets, restricting their
applications to general purposes. We seek to find a universal
surrogate model that works for as many different structures
as possible through a single training.

3. Methods
3.1. Problem Set

For a given multilayer structure with N layers (see
Fig. 1a), we denote the material arrangements as m =
{m1,m2, . . . ,mN} and the thickness sequence as t =
{t1, t2, . . . , tN}. Here, mi, ti refers to the material and
thickness at the ith layer, respectively. mi ∈ M is a dis-
crete variable that can take several distinct values from
the material database M. Then, a multilayer structure can
be described as X = {m, t} ∈ X . A physical simulator
S : X −→ Y maps the multilayer structure X to the d-
dimensional optical properties Y = {y1, y2, . . . , yd} ∈ Y
and works as an oracle for any type of material arrange-
ments. Existing surrogate models Ŝ(t|θm) : X −→ Ŷ with
learnable parameters θm take in the structure X with differ-
ent thickness t but with fixed material arrangement m and
output predicted optical properties Ŷ = {ŷ1, ŷ2, . . . , ŷd}.
In this work, our surrogate model Ŝ(m, t|θ) : X −→ Ŷ with

Figure 1: (a) An example of a multilayer structure as well
as its structure serialization. (b) The architecture of OL-
Transformer. FC Layers: Fully Connected layers.

parameters θ wants to predict the optical properties for uni-
versal structures with different m and different thickness t.
In this work, we consider predicting the transmission and
reflection spectra from 400 nm to 1100 nm. Both spectra are
discretized by 10 nm, making d=2×71=142. Other types of
optical properties can also be predicted similarly.

3.2. Structure Serialization

In order to expand the model’s capability towards versa-
tile m, we combine with the recently developed technique
called structure serialization (Ma et al., 2023), where we
use structure tokens to represent the material and thickness
information (mi, ti) at each layer simultaneously, similar
to how Natural Language Processing (NLP) researchers to-
kenize language sentences. By appending multiple tokens
one-by-one, we can convert a multilayer structure into a
sequence of tokens that the transformer model can deal with.
We also use a special token of ‘EoS’ (end of sequence) to
enable the learning of structures with different numbers of
layers (we set the maximum to be 20 layers). There are
18 different types of materials in our material database M,
all of which are widely accessible in many nanofabrication
centers. In addition, considering it is impossible to use an
infinite number of tokens to describe a continuous thick-
ness, we discretize the thickness by 10 nm and form 50
different choices from 10 nm to 500 nm. Therefore, there
are 18×50+1=901 tokens in our vocabulary and the total
number of structures with different material arrangements
expands to 1820 ∼ 1025. This method is scalable and can be
used to include other materials and extend to more layers.

3.3. Model Architecture

Our model architecture is shown in Fig. 1b, which is a stan-
dard encoder-only transformer that takes in the sequence
of tokens. Each token will go through a physical embed-
ding and positional embedding before being passed to the
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Table 1: Important parameters of our OL-Transformer

NAME PARAMETER

NUMBER OF ENCODER BLOCK (N) 12
NUMBER OF ATTENTION HEAD (A) 16

DIM OF HIDDEN STATES (H) 1024
NUMBER OF TOKENS 901

FC LAYERS 1024-1024-142
NUMBER OF PARAMETERS 65 M

Table 2: Performance of our OL-Transformer. Batch size =
1000 for batch simulation. MSE: Mean Square Error.

ATTRIBUTE TMM OURS SPEEDUP

SINGLE SIMULATION (S) 0.057 0.010 ∼5.7
BATCH SIMULATION (S) - 0.000015 ∼3800

MSE - 0.000057 -

transformer model. The physical embedding plays a sim-
ilar role as the input embedding in (Vaswani et al., 2017).
Similar to the class token in BERT (Devlin et al., 2018)
and ViT (Dosovitskiy et al., 2020), we add a ‘BoS’ token
(Beginning of Sequence) at the 0-th input position and treat
its corresponding output from the encoder as the hidden
representation for the input sentence. A fully connected
layer is used to decode this output into the predicted spectra
Ŷ . Our model is trained by minimizing the mean square
error (MSE): L = ||Y − Ŷ ||2. Masked language modeling
is not used because each layer in the multilayer structure
is equally important when predicting the optical properties.
The training takes about one week on a single NVIDIA 3090
GPU. Table 1 lists important parameters of our model.

3.4. Dataset Generation

Each training data contains a pair of multilayer structure and
its spectra. During dataset generation, the multilayer struc-
tures are created by first randomly sampling the number of
layers with an increasing ratio, and then uniformly sampling
the material arrangements m and the thickness sequence
t. We then obtain their reflection and transmission spectra
using TMM simulation. In total, we generate 10 M pairs
of structures and spectra as the training dataset and another
1 M pairs for validation, which takes ∼1200 h for a single
CPU. In the future analysis and comparison, we refer TMM
as the accurate physical simulator and our OL-Transformer
as the surrogate model.

4. Experiments
4.1. Simulaion Speedup

In Table 2, we report the performance of simulation acceler-
ation on the validation dataset. The physical simulation of
TMM is evaluated on a single 2.4GHz CPU since there is no
package available on GPU. Our model of OL-Transformer
is evaluated on a single NVIDIA 3090. When making pre-

dictions for a single structure at one time, on average, our
surrogate model can finish each simulation∼5.7 times faster
than the TMM. After using the GPU batch calculation (batch
size = 1000), our model shows ∼3800 fold time improve-
ment compared to TMM. Therefore, our model can be used
as a faster simulator for multilayer thin film structures. This
can be very helpful when a large number of simulations are
needed, e.g., to inverse design or to understand the physical
structure-property behaviors.

4.2. Universal Surrogate Simulator

In principle, our method can extend up to 1025 different
structures and work as a universal surrogate simulator. How-
ever, we cannot iterate and evaluate every one of them be-
cause there are so many. Therefore, in Table 2, we report
the universal prediction ability on the validation dataset and
evaluate the averaged MSE on 106 different structures (since
106 � 1025, each structure is a distinct type with different
material arrangements). For a better comparison, we ran-
domly select six structures with different m and report their
detailed prediction performance in Table 3. For each struc-
ture, we randomly generate 1000 structures with different t
and report their averaged MSE. Compared to the reported
work which can only predict a specific structure, ours are
versatile to different structures. Notice their MSE is listed
only for reference because we are predicting different opti-
cal properties and cannot be compared directly. In Fig. 2, we
also give three examples to visualize the difference between
target spectra from TMM (real lines) and predicted spectra
by our model (dashed lines). Based on the low MSE and
close-to-simulator spectra, we demonstrate that our model
exhibits a strong generalization ability to predict the spectra
of universal types of structures, significantly expanding the
capabilities of existing surrogate models.

Figure 2: Three examples of predicting the transmission
spectra (T) and reflection spectra (R). Title shows their MSE.

4.3. Understanding the Universal Learning Ability

To understand why our model exhibits a strong general-
ized learning ability, we first use t-SNE to reduce the high-
dimensional physical embeddings for each token into two
dimensions and visualize the results in Fig. 3. These tokens
referring to the same material are marked as the same color.
Clearly, we can see a transition of materials from the low
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Table 3: Prediction performance on six different structures. Layers: The total number of layers in the given type of multilayer
structure. Reported MSE: The reported MSE in existing work is summarized only for reference. We cannot directly compare
them because the predicted optical properties are different.

DESCRIPTION OF MULTILAYER STRUCTURE LAYERS MSE REPORTED MSE

Ag/SiO2/Ag 3 8.2× 10−4 ∼ 10−5(DENG ET AL., 2021)
MgF2/SiO2/Al2O3/TiO2/Si/Ge 6 4.9× 10−4 ∼ 10−6(CHEN ET AL., 2023)

SiO2/Si3N4/SiO2/Si3N4/SiO2/Si3N4 6 2.6× 10−5 -
TiO2/SiO2/Al2O3/Si3N4/ZnO/ZnS/ITO/HfO2/Si 9 2.5× 10−5 -

ZnS/TiO2/MgO/ZnS/Si3N4/ITO/SiO2/TiO2/Ta2O5/ZnO/Al2O3/Ag 12 1.3× 10−5 -
SiO2/Si3N4/SiO2/Si3N4/SiO2/Si3N4/SiO2/Si3N4/SiO2/Si3N4/

SiO2/Si3N4/SiO2/Si3N4/SiO2/Si3N4/SiO2/Si3N4/SiO2/Si3N4
20 1.1× 10−3 ∼ 10−4(LIU ET AL., 2018)

refractive index region (lower left) to the high refractive
index region (upper right). For each material, the increas-
ing size of dots corresponds to the increasing thickness,
e.g., 10 nm for the smallest dot and 500 nm for the largest
dot. Because our model only takes in the tokens, instead
of the thickness or material’s properties, these observations
demonstrate that our model exhibits the ability to recognize
and recover the material and thickness information using
hidden representations. Apart from this, intrinsic physics
can also be obtained from Fig. 3. For example, these dots
representing metals, e.g, Al, Ag (see zoomed view (i)), are
distinguishable at small thickness but cluster together at
greater thickness. This makes sense as metals with thick-
ness greater than the penetration depth have no impact on
light-matter interaction. In addition, most dielectric materi-
als with small thickness are clustered together (see zoomed
view (ii)), which reminds us of the fact that thin dielectric
materials are hard to distinguish because they all have a
similar impact on light propagation.

Figure 3: The 2D visualization of the hidden space using
t-SNE to reduce dimension.

To further understand how our model leverages these learned
embeddings for surrogate simulation, we then visualize one
of the attention maps for a given multilayer structure in Fig.

4a. We also simulate and visualize the electrical field distri-
bution from 400 nm to 1100 nm by solving the multilayer
system through TMM, as shown in Fig. 4b. The attention
map in Fig. 4a exhibits an obvious alternating pattern on
off-diagonal elements, suggesting a high correlation in these
nearby layers. Interestingly, such alternating patterns can
also be observed in Fig. 4b, where the electrical field illus-
trates how light interacts and propagates among each layer.
Intuitively, self-attention can be treated as the analogy of
physical interactions inside the transformer model.

Figure 4: (a) Visualization of attention map (Block 0, Head
15). (b) The electrical field distribution.

In summary, the empirical understanding of the strong uni-
versal learning ability can be explained by 1) our model
learns the unique embeddings with intrinsic physical mean-
ings for all structure tokens and 2) our model learns to use
self-attention to represent the light-matter interaction among
each layer. Although there are up to 1025 different mate-
rial arrangements, all of them can be reconstructed by 901
structure tokens. Our model learns to decompose the predic-
tion of each type of structure into the two-step learning of
physical embeddings and self-attention.

5. Conclusion
In this paper, we introduce OL-Transformer, a fast and uni-
versal surrogate solver for simulating the transmission and
reflection spectra in optical multilayer thin film structures.
Compared to existing surrogate models, our model can ex-
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tend the learning capabilities from limited structures to 1025

different structures without adaptation used in transfer learn-
ing or meta-learning. In addition, our model still achieves a
six-fold speedup compared to numerical simulation, with a
potential 3800-fold when using batch calculations, facilitat-
ing the downstream applications including inverse design
and understanding the structure-property behaviors. Our
work expands the existing transformer applications from
mainstream NLP and CV to optical simulations and demon-
strates that transformer architecture (embedding and self-
attention) is also an effective learner for optical physics.

6. Potential Broader Impact
In optics and photonics, understanding the structure-
property relationship is vital for developing optical devices
and photonic applications. By leveraging the strong general-
ization ability of transformer, our model can serve as a fast
and universal surrogate simulator for predicting the optical
properties of optical multilayer thin film structures, e.g.,
transmission and reflection spectra, providing an easy and
straightforward to explore the light-matter interaction and
inverse design for specific structures to satisfy desired opti-
cal properties. Our method can be easily scaled to predict
other types of optical properties, including angled-resolved
spectra and structure color, and include more materials with
more complex layered structures. In addition, the way we
serialize the multilayer structure as a sequence of tokens can
also be directly applied to other types of photonic structures,
including meta-grating structures and free-form metasur-
faces, with the potential to speed up the simulation and pre-
diction of these structures with higher complexity. On the
other hand, our work also demonstrates that transformer has
a strong capability of capturing intrinsic physical knowledge
and using them for predicting physical behaviors, which can
inspire future work to leverage transformer to solve compli-
cated and non-trivial physical problems.

References
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