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Abstract

Several hybrid approaches, incorporating prior do-
main knowledge within machine learning (ML),
have recently been introduced to improve gener-
alization and robustness. However, such hybrid
methods were mostly tested on dynamical sys-
tems, with only limited study of the influence of
each model component on global performance
and parameter identification. In this work, we as-
sess the performance of hybrid modeling on stan-
dard regression problems: we compare, on syn-
thetic problems, several approaches for training
such hybrid models, focusing on model-agnostic
methods that additively combine a parametric
physical term with an ML term. We also intro-
duce a new hybrid approach based on partial de-
pendence functions. Experiments are carried out
with different types of ML models, including tree-
based models and neural networks.

1. Introduction
Recently, hybrid approaches have been introduced to in-
corporate prior domain knowledge within machine learn-
ing (ML) models to improve generalization and robustness
of purely data-driven ML approaches (Daw et al., 2017;
De Bézenac et al., 2019; Yin et al., 2021b). Their success
has been shown empirically on a range of synthetic and real-
world problems (Yin et al., 2021b; Ayed et al., 2019; Mehta
et al., 2021; Donà et al., 2022). However, these models
were mostly evaluated on dynamical problems, using neural
networks as ML models, leaving aside other methods.

In this work, we empirically study the benefits of hybrid
methods against data-driven methods on standard static re-
gression problems (as opposed to dynamical problems). We
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focus on hybrid models that additively combine a parametric
physical term with an ML term, which can be of any type,
and relate differences in terms of prediction and parameter
identification performance. We also introduce a new hybrid
approach based on partial dependence functions.

Related works. Hybrid models combining additively an
algebraic term hk with an ML model ha have emerged in
various domains, massively relying on neural networks and
applied to dynamical problems (Yin et al., 2021a; Takeishi
& Kalousis, 2021; Wehenkel et al., 2022; Donà et al., 2022).
In a more standard regression setting, Zhang et al. (2019)
combined random forests with a linear parametric term.
Elements of discussion about the well-posedness of the ad-
ditivity hypothesis have been introduced in previous works.
Yin et al. (2021b) show the existence and uniqueness of an
optimal pair (hk, ha), when the contributions of ha are con-
strained to be minimal. Donà et al. (2022) demonstrate the
convergence of an algorithm alternating between the opti-
mization of hk and the optimization of ha, without however
any guarantee about convergence points.

2. Problem statement
Let us define a regression problem, with y ∈ R and x ∈ Rd,
with d ∈ N+, drawn from a distribution p(x, y) such that
y = f(x) + ε with f : Rd 7→ R the partially known
generating function and ε ∼ N (0, σ2) the noise term. We
focus on problems such that f(x) can be decomposed as:
Hypothesis 1 (H1, Additivity).

y = fk(xk) + fa(x) + ε,

where xk is a subset of K ≤ d input variables. We assume
partial knowledge through some known algebraic function
hθk
k (xk) ∈ Hk with tunable parameters θk, such that for the

optimal parameters θ∗k we have hθ∗
k

k = fk. The residual term
fa(x) is unknown and is approximated in this work through
an ML component hθa

a ∈ Ha, with parameters θa
1. The

final model h ∈ H is denoted h(x) = hθk
k (xk) + hθa

a (x),
with the function space H defined as Hk + Ha. H1 is
common when model-based methods and ML models are

1In the following, hθk
k and hθa

a will sometimes be denoted
simply as hk and ha to lighten the notations.
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combined (Takeishi & Kalousis, 2021; Yin et al., 2021a;
Donà et al., 2022; Wehenkel et al., 2022).

Given a learning sample of N input-output pairs LS =
{(xi, yi)}Ni=1, drawn from p(x, y), we seek to identify a
function h = hθk

k + hθa
a , i.e. parameters θk and θa, that

minimizes the following two distances:

d(h, y) = E(x,y)∼p(x,y){(h(x)− y)2}, (1)

dk(h
θk
k , fk) = Exk∼p(xk){(h

θk
k (xk)− fk(xk))

2}. (2)

The first distance measures the standard generalization error
of the global model h. The hope is that taking hk into
account will help learning a better global model than fitting
directly ha on y. The second distance dk measures how
well the tuned hk approximates fk. An alternative to dk is
the distance between the estimated and optimal parameters
θ̂k and θ∗k (e.g., ||θ̂k − θ∗k||2). dk however has the advantage
not to require θ∗k to be fully identifiable, i.e. there can exist
several sets of parameters θ∗k such that hθ∗

k

k = fk.

Minimizing the distance in (2) is expected to be challenging
and sometimes even ill-posed. Indeed, if ha is too powerful,
it could capture f entirely and leave little room for the
estimation of fk. Finding the right balance between hk and
ha is thus very challenging, if not impossible, using only
guidance of the learning sample LS. Unlike (1), (2) cannot
be estimated from a sample of input-output pairs and hence
cannot be explicitly used to guide model training.

In the following, we will discuss the optimality of the hybrid
methods under two additional assumptions:

Hypothesis 2 (H2, Disjoint features). Let xa be a subset
of features disjoint from xk (xk ∩ xa = ∅). There exists a
function fr

a(xa) such that fa(x) = fr
a (xa) for all x.

Hypothesis 3 (H3, Independence). Features in xk are inde-
pendent from features in xa (xk ⊥⊥ xa).

H2 makes the problem easier as fk now captures all the
dependence of y on xk. In the absence of H3, it might be
hard to distinguish real contributions from xk to f from
those due to correlations with features not in xk.

3. Methods
We focus on model-agnostic approaches, i.e. that can be
applied with any algebraic function hk and any type of
ML model ha. For both terms, we only assume access to
training functions, respectively denoted fithk , fithk+γ , and
fitha , that can estimate each model parameters, respectively
θk, (θk, γ) and θa, so as to minimize the mean squared error
(MSE) over LS (see below for the meaning of γ), where
parametric methods rely on gradient descent.

3.1. Sequential training of hk and ha

This baseline approach first fits hk on the observed output
y, then fits ha on the resulting residuals. More specifically,
we train hk on y by introducing a constant γ ∈ R, such that
(θ̂k, γ̂) = fithk+γ(LS). Afterwards, we fit ha on the output
residuals: θ̂a = fitha{(xi, yi − hθ̂k

k (xi)− γ̂)}Ni=1.

Let F̂k be the set of all functions f̂k mapping xk ∈ Xk to
some value y ∈ R, i.e. F̂k = {f̂k : Xk 7→ R}. Under H2
and H3, it can be shown that f̂∗

k = argminf̂k∈F̂k
d(f̂k, y)

is such that f̂∗
k (xk) = fk(xk)+C, for every xk ∈ Xk, with

C = Exa
{fr

a (xa)}. Hence, this approach is sound at least
asymptotically. Note however that even under H2 and H3,
we have no guarantee that this approach produces the best
estimator for a finite sample size, as fr

a (xa) + ϵ acts as a
pure additive noise term.

3.2. Alternate training of hk and ha

Donà et al. (2022) proposed a hybrid additive approach that
alternates between a training step (i.e., one epoch) on hk

and one on ha (using neural networks for ha). We include
this approach in our comparison, but also investigate it with
random forests (Breiman, 2001) and tree gradient boosting
(Friedman, 2002). θ̂k is initialized by (fully) fitting hθk

k + γ

on y. Then, we alternate a single epoch on hθk
k + γ with a

single epoch for neural networks (as in Donà et al., 2022)
or a complete fit of ha for tree-based models.

While some theoretical results are provided by Donà et al.
(2022), convergence of the alternate method towards the
optimal solution is not guaranteed in general. Despite an
initialization favoring hk, it is unclear whether a too expres-
sive ha will not dominate hk and finding the right balance
between these two terms, e.g. by regularizing further ha, is
challenging. Under H2 and H3 however, the population ver-
sion of the algorithm produces an optimal solution. Indeed,
hk will be initialized as the true fk, as shown previously,
making the residuals y − hk at the first iteration, as well as
ha, independent of xk. The hk will thus remain unchanged
(and optimal) at subsequent iterations.

3.3. Partial Dependence-based training of hk and ha

We propose a novel approach relying on partial dependence
(PD) plots (Friedman, 2001) to produce a proxy dataset
depending only on xk to fit hk. PD measures how some
features impact the prediction of a model, on average. Let
xk be the subset of interest and x−k its complement, with
xk ∪ x−k = x, then the PD of a function f(x) on xk is:

PD(f,xk) = Ex−k
[f(xk,x−k)] . (3)
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Algorithm 1 Partial Dependence Optimization
Input: LS = {(xi, yi)}Ni=1

θ̂a ← fitha(LS)
(θ̂k, γ̂)← fithk+γ({(xk,i, P̂D(hθ̂a

a ,xk,i;LS))}Ni=1)
for n = 1 to Nrepeats do
θ̂a ← fitha({(xi, yi − h

θ̂k
k (xk,i)− γ̂)}Ni=1)

(θ̂k, γ̂)←
fithk+γ({(xk,i, h

θ̂k
k (xk,i)+ γ̂+ P̂D(hθ̂a

a ,xk,i;LS))}Ni=1)
end for
θ̂a ← fitha({(xi, yi − h

θ̂k
k (xk,i)− γ̂)}Ni=1)

Under H1 and H2, Friedman (2001) shows that the PD of
f(x) = fk(xk) + fr

a(xa) is:

PD(f,xk) = fk(xk) + C, with C = Exa
{fr

a(xa)}. (4)

The idea of our method is to first fit any sufficiently expres-
sive ML model ha(x) on LS and to compute its PD w.r.t. xk

to obtain a first approximation of fk(xk) (up to a constant).
Although computing the actual PD of a function using (3)
requires in principle access to the input distribution, an ap-
proximation can be estimated from LS as follows:

P̂D(ha,xk;LS) =
1

N

N∑
i=1

ha(xk,xi,−k). (5)

A new dataset of pairs (xk, P̂D(ha,xk;LS)) can be built
to fit hk. In our experiments, we consider only the xk values
in the learning sample but P̂D(ha,xk;LS) could also be
estimated at other points xk to artificially increase the size
of the proxy dataset. In practice, optimizing θk only once
on the PD of ha could leave residual dependence of xk on
the resulting y− hθ̂k

k (xk)− γ̂. We thus repeat the sequence
of fitting ha on the latter residuals, then fitting hk on the
obtained P̂D(hθ̂a

a ,xk;LS) + hθ̂k
k (xk) + γ̂, with θ̂k and θ̂a

the current optimized parameter vectors (see Algorithm 1).

The main advantage of this approach over the alternate one is
to avoid domination of ha over hk. Unlike the two previous
approaches, this one is also sound even if H3 is not satisfied
as it is not a requirement for (4) to hold. One drawback
is that it requires ha to capture well the dependence of f
on xk so that its PD is a good approximation of fk. The
hope is that even if it is not the case at the first iteration,
fitting hk, that contains the right inductive bias, will make
the estimates better and better over the iterations.

4. Experiments
We investigate the performance of all methods on simu-
lated regression datasets, through estimates of (1) and (2)
on a test set TS, respectively denoted d̂(h, y;TS) and
d̂k(h

θk
k , fk;TS). We also report rMAE(θ∗k, θk), the rela-

tive mean absolute distance between θ∗k and θk (lower is

Table 1. Results on Friedman problem. We report the mean and
standard deviation of d̂ and d̂k over the 10 test sets (TS). “fk →
ha” is the ideal approach that fits ha on y − fk(xk).

d̂(h, y;TS) d̂k(h
θk
k , fk;TS)

Method Unfiltered Filtered Unfiltered Filtered

fk → ha 1.58± 0.33 1.23± 0.10 -
Sequential 1.54± 0.31 1.43± 0.13 0.18± 0.16

MLP Alternate 1.43± 0.09 1.32± 0.09 0.10± 0.09 0.02± 0.02
PD-based 1.54± 0.12 1.38± 0.09 0.06± 0.07
ha only 2.62± 0.75 -

fk → ha 1.73± 0.09 1.75± 0.12 -
Sequential 1.74± 0.11 1.81± 0.14 0.18± 0.16

GB Alternate 1.79± 0.11 1.78± 0.15 0.91± 1.45 0.06± 0.06
PD-based 1.77± 0.13 1.78± 0.12 0.03± 0.02
ha only 3.43± 0.94 -

fk → ha 2.03± 0.18 1.96± 0.17 -
Sequential 2.11± 0.23 2.05± 0.24 0.18± 0.16

RF Alternate 2.03± 0.19 1.98± 0.17 0.04± 0.03 0.04± 0.04
PD-based 2.16± 0.27 2.09± 0.26 0.16± 0.15
ha only 5.58± 1.91 -

better for all measures). For the hybrid approaches, we
use as ha either a multilayer perceptron (MLP), gradient
boosting with decision trees (GB) or random forests (RF).
We compare these hybrid models to a standard data-driven
model that uses only ha. We also compare fitting ha with
and without input filtering. Filtering consists in removing
xk from the set of inputs x fed to the ML model ha, to fully
exploit H2. This allows us to verify convergence claims
about hk in Section 3.2. Architectures (e.g. for MLP, the
number of layer and neurons) are kept fixed across training
methods to allow a fair comparison between them.

4.1. Friedman problem (H2 and H3 satisfied)

We consider the following synthetic regression problem:

y = θ0 sin(θ1x0x1) + θ2(x2 − θ3)
2 + θ4x3 + θ5x4 + ε,

where x ∼ U(0, 1) and ε ∼ N (0, 1) (Friedman et al., 1983).
We generate 10 different datasets using 10 different sets of
values for θ0, . . . , θ5. For the hybrid approaches, we use the
first term as prior knowledge, i.e. fk = θ0 sin(θ1x0x1).

We see in Table 1 that all hybrid training schemes outper-
form their data-driven counterpart. They come very close to
the ideal fk → ha method, and are sometimes even slightly
better, probably due to slight overfitting issues. Sequential
fitting of hk and ha performs as well as the alternate or
PD-based approaches, as H2 and H3 are satisfied for this
problem (see Section 3.1). Filtering generally improves per-
formance of hybrid schemes as H2 is verified. PD-based op-
timization yields good approximations of fk (as shown by a
low d̂k). The alternate approach follows closely whereas the
sequential one ends up last, which can be expected as fitting
hk only on y induces a higher noise level centered around
Exa

{fr
a (xa)}, while the other approaches benefit from re-

duced perturbations through ha estimation, as explained
in Section 3.1. Filtering vastly decreases d̂k for alternate
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approaches, supporting claims introduced in Section 3.2,
while this measure remains unimpaired for sequential and
PD-based training by construction.

4.2. Correlated input features (H3 not satisfied)

Correlated linear model. Let y = β0x0+β1x1+ε, with
β0 = −0.5, β1 = 1,x ∼ N (0,Σ), and ε ∼ N (0.52, 1).
We use as known term fk(xk) = β0x0. Regressing y on x0

yields the least-squares solution (Greene, 2003):

E
[
β̂0

]
= β0 +

cov(x0, x1)

var(x0)
β1. (6)

We set cov(x0, x1) = 2.25 and var(x0) = 2 so that (6)
reverses the sign of β0. The sequential approach should
hence yield parameter estimates of β0 close to (6) while we
expect the others to correct for this bias.

From Table 2, we observe that, contrary to the PD-based
approach, the sequential and alternate methods return very
bad estimations of β0, as H3 is no longer verified. Filtering
corrects the bias for the alternate approach but degrades the
MSE performance for the sequential method as it removes
the ability to compensate for the hk misfit.

Table 2. Results for the correlated linear problem. We report d̂ and
rMAE(β∗

0 , β̂0), over 10 different datasets.

d̂(h, y;TS) rMAE(β∗
0 , β̂0)

Method Unfiltered Filtered Unfiltered Filtered

Seq. (MLP) 0.30± 0.03 0.74± 0.09 224.14± 13.48
Alt. (MLP) 0.30± 0.02 0.31± 0.04 186.65± 21.31 15.53± 13.57
PD (MLP) 0.30± 0.03 0.29± 0.02 26.47± 17.32
Seq. (GB) 0.59± 0.06 1.38± 0.11 224.14± 13.48
Alt. (GB) 0.57± 0.06 0.60± 0.09 148.75± 67.35 24.58± 12.20
PD. (GB) 0.56± 0.05 0.64± 0.13 36.05± 17.50
Seq. (RF) 0.53± 0.05 0.90± 0.07 224.14± 13.48
Alt. (RF) 0.43± 0.04 0.42± 0.04 111.04± 52.78 45.38± 22.39
PD (RF) 0.41± 0.03 0.43± 0.04 57.47± 15.55

Correlated Friedman problem. The structure is identi-
cal to Section 4.1 but with correlated inputs drawn from
a multivariate normal distribution where µi = 0.5 and
var(xi) = 0.75,∀i, and cov(xi, xj) = ±0.3,∀i ̸= j
(the covariance sign being chosen randomly). Inputs are
then scaled to be roughly in [−1, 1]. Here again, we use
fk = θ0 sin(θ1x0x1).

As in Section 4.1, Table 3 shows that hybrid models out-
perform their data-driven equivalents. PD-based methods
usually yield more robust hk estimations in the general unfil-
tered case, but struggle to line up with the alternate scheme
in terms of predictive performance, except for GB-related
models. For RF, this can be explained by a worse hk esti-
mation while for MLP we assume that it is due to ha: in
the alternate approach, it is optimized one epoch at a time,
interleaved with one step on hk, whereas that of PD-based
methods is fully optimized. Sequential and alternate ap-
proaches undergo stronger hk misparameterization without

Table 3. Results for the correlated Friedman problem.

d̂(h, y;TS) d̂k(h
θk
k , fk;TS)

Method Unfiltered Filtered Unfiltered Filtered

fk → ha 1.64± 0.23 1.51± 0.17 -
Sequential 2.07± 0.40 2.68± 1.38 1.35± 1.42

MLP Alternate 1.95± 0.33 1.62± 0.24 0.49± 0.44 0.14± 0.19
PD-based 2.24± 0.31 1.78± 0.30 0.17± 0.23
ha only 2.77± 0.73 -

fk → ha 2.58± 0.45 2.53± 0.44 -
Sequential 2.90± 0.39 3.91± 1.49 1.35± 1.42

GB Alternating 2.67± 0.38 2.62± 0.43 0.51± 0.53 0.22± 0.25
PD-based 2.54± 0.35 2.47± 0.36 0.03± 0.02
ha only 4.49± 0.66 -

fk → ha 3.02± 0.45 2.93± 0.45 -
Sequential 3.78± 0.78 4.04± 1.30 1.35± 1.42

RF Alternating 3.06± 0.39 2.99± 0.38 0.14± 0.16 0.15± 0.18
PD-based 3.24± 0.38 3.16± 0.37 0.27± 0.20
ha only 6.70± 1.47 -

filtering since H3 is not met, but the latter mitigates this w.r.t.
the former, as was already observed in Section 4.1. Input
filtering degrades predictive performance for the sequential
methods as they cannot counterbalance a poor hk.

4.3. Overlapping additive structure (H2 not satisfied)

Let y = βx2
0 + sin(γx0) + δx1 + ε, with β = 0.2, γ =

1.5, δ = 1, ε ∼ N (0, 0.52) and x sampled as in the cor-
related linear problem. We define fk(xk) = βx2

0 and
fa(x) = sin(γx0)+δx1+ε. Hence, H2 does not hold. Even
with β̂ = β∗, ha still needs to compensate for sin(γx0). Fil-
tering is thus expected to degrade MSE performance for
all hybrid approaches as ha(x1) will never compensate this
gap, which is observed in Table 4. Results for RF are not
shown for the sake of space, but are similar to GB.

Table 4. Results for the overlapping problem.

d̂(h, y;TS) d̂(h, y;TS)
Unfiltered Filtered Unfiltered Filtered

Method MLP GB

fk → ha 0.35± 0.02 0.54± 0.04 0.51± 0.04 1.00± 0.12
Sequential 0.35± 0.01 0.59± 0.05 0.55± 0.07 1.07± 0.11
Alternate 0.35± 0.02 0.56± 0.05 0.54± 0.09 1.01± 0.11
PD-based 0.34± 0.02 0.56± 0.05 0.53± 0.05 0.99± 0.12
ha only 0.37± 0.02 0.55± 0.07

5. Conclusion
We study several hybrid methods on supervised regression
problems modeled in an additive way, using neural networks
models and tree-based approaches. We empirically show
that trends observed for neural networks also apply for the
non-parametric tree-based approaches, both in terms of pre-
dictive performance as in the estimation of the algebraic
known function. We introduce claims related to the conver-
gence of multiple hybrid approaches, under mild hypotheses,
and verify their soundness on illustrative experiments. We
present a new hybrid approach leveraging partial depen-
dence and show its competitivity against sequential and
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alternate optimization schemes. We highlight its benefits in
estimating the parametric prior and show that it alleviates
both the risk of the ML term to dominate the known term
and the need for assuming independent input features sets.
As future work, we will apply our method to real problems,
investigate further the theoretical properties of the PD-based
approach and extend it to dynamical problems.

Software and Data
Our Python implementations of the hybrid methods
are available at https://github.com/yannclaes/
kg-regression.

Broader Impact Statement
Machine learning models can occasionally show undesired
properties and behave badly when encountering states they
had not been prepared/designed for. In this line of thought,
our contributions aim at enhancing the combined effects of
domain knowledge, through first-principles models, with
machine learning models, which ought to make the latter
more interpretable, less data-expensive and eventually more
robust to perturbations and reliable for real-life applications,
thereby reducing risks of failure.
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