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Abstract
Physics-informed neural networks (PINNs) pro-
vide a framework to build surrogate models for
dynamical systems governed by differential equa-
tions. During the learning process, PINNs incor-
porate a physics-based regularization term within
the loss function to enhance generalization perfor-
mance. Since simulating dynamics controlled by
partial differential equations (PDEs) can be com-
putationally expensive, PINNs have gained popu-
larity in learning parametric surrogates for fluid
flow problems governed by Navier-Stokes equa-
tions. In this work, we introduce RANS-PINN, a
modified PINN framework, to predict flow fields
(i.e., velocity and pressure) in high Reynolds num-
ber turbulent flow regimes. To account for the
additional complexity introduced by turbulence,
RANS-PINN employs a 2-equation eddy viscos-
ity model based on a Reynolds-averaged Navier-
Stokes (RANS) formulation. Furthermore, we
adopt a novel training approach that ensures ef-
fective initialization and balance among the vari-
ous components of the loss function. The effec-
tiveness of the RANS-PINN framework is then
demonstrated using a parametric PINN.

1. Introduction
The traditional approach to designing complex devices
and systems, for example, aerodynamic surfaces and ther-
mal management systems, involves a back-and-forth inter-
play between exploring the design and operating space and
assessing performance through computationally intensive
computational fluid dynamics (CFD) simulations. However,
the high computational cost associated with high-fidelity
CFD solvers like Simcenter Star-CCM+ or Ansys Fluent
undeniably curtails the overall scope of the design optimiza-
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tion process, often leading to suboptimal design choices.
In this context, neural networks, with their expressiveness
to capture pertinent functional relationships between ini-
tial/boundary conditions and the solution field of a PDE and
the ability to predict simulation outcomes by invoking a sin-
gle forward pass, offer an excellent tool for building fast and
accurate surrogate models for CFD simulations. Such deep
learning based approaches can accelerate design evaluations
significantly, facilitating the generation of enhanced design
choices through fast predictions of simulation outcomes.

In recent years, there has been considerable attention given
to the use of deep learning methods to expedite CFD simu-
lations and thereby improve engineering design processes
(Vinuesa & Brunton, 2022; Warey et al., 2020; Zhang et al.,
2022). While some approaches use deep learning to accel-
erate traditional CFD solvers (Hsieh et al., 2019; Kochkov
et al., 2021a), a certain body of research treats the flow
problems as problems defined over a cartesian grid or an
irregular mesh and uses techniques involving convolutional
or graph neural operators to predict the flow fields (Hen-
nigh, 2017; Jiang et al., 2020; Wang et al., 2020). Alter-
natively, in another line of work, physics-informed neural
networks (PINNs) exploit automatic differentiation and in-
corporate the underlying PDEs to approximate the solution
field (Raissi et al., 2019; White et al., 2019; Nabian & Mei-
dani, 2020; Zhang et al., 2020; Jin et al., 2021). In addition,
self-supervised learning methods for solving PDEs with
PINNs have also been explored (Dwivedi et al., 2019; Lu
et al., 2019; Nabian & Meidani, 2019). This expanding
body of research demonstrates the ability of ML-based ap-
proaches to accurately predict simulation outcomes, such
as flow and temperature profiles over a spatiotemporal do-
main, utilizing both mesh-based and mesh-free techniques.
Notably, the inclusion of physics-based regularization in
these formulations have proven instrumental in enhancing
the quality of the results.

PINNs combine differential equations, such as compressible
and incompressible Navier-Stokes equations, with experi-
mental data or high-fidelity numerical simulations. While
their ability to replace existing CFD solvers is a matter of
debate, PINNs can accelerate simulations (Kochkov et al.,
2021b), reconstruct flow domains from a limited sensor or
experimental data (Wang et al., 2022), and create parametric
surrogates for design exploration and optimization (Olden-
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burg et al., 2022; Sun et al., 2023). However, current PINN
methods encounter challenges due to the complex interac-
tion among the individual components of the loss function
(both supervised and unsupervised), particularly when deal-
ing with high-dimensional, non-convex PDE based losses.
These challenges become more pronounced as the physics
of the problem becomes more intricate, e.g., turbulent flows.
RANS, the most commonly used turbulent CFD simulation
tool, offers reasonably accurate solutions at a lower com-
putational cost compared to high-fidelity direct numerical
simulation (DNS) and large eddy simulation (LES), which
require even finer mesh refinement to adequately capture
all turbulence scales, further increasing computation time.
Since its introduction by Launder & Spalding (1974), k-ϵ
model (k is the turbulent kinetic energy and ϵ is the turbulent
dissipation rate) has been established as a preferred model
for efficient computation and real-world problems (Yang &
Shih, 1993; Scott-Pomerantz, 2004; Ghosh et al., 2022).

From this perspective, incorporating RANS-based turbu-
lence modeling can significantly expand the application of
PINNs in real-world simulation and design problems. How-
ever, using PINNs for RANS-based turbulence modeling
is yet to be thoroughly studied (Majchrzak et al., 2023).
Previous research by Eivazi et al. (2022) employed RANS
within PINNs but utilized a Reynolds-stress formulation
instead of a 2-equation model like k-ϵ. In contrast, Xu et al.
(2021) employed a PINN with RANS formulation to cal-
culate missing flow components. In this study, we focus
on constructing PINN-based surrogate models for turbulent
flow problems using a RANS formulation, specifically the
k-ϵ model, along with relevant data. We refer to the result-
ing solution as RANS-PINN and implement it using Nvidia
Modulus (22.03) (Mod; Hennigh et al., 2021). The proposed
training regime first pre-trains the network using data losses
and then introduces the physics losses in a carefully crafted
manner. We first assess RANS-PINN on three distinct ge-
ometries: a cylinder, an airfoil, and flow over backward
facing step; and, then employ it to learn a parametric PINN
for flow over a cylinder. This approach improves upon the
existing turbulence modeling capabilities of Nvidia Modu-
lus, while also adding to the very few existing studies on
RANS based turbulence modeling using PINNs.

2. RANS-PINN
2.1. Governing physics

The underlying physics is governed by the continuity equa-
tion (to conserve mass), Navier-Stokes equation (to conserve
momentum), and standard k-ϵ turbulence model. By letting
u and p denote the flow velocity and pressure, respectively,

continuity and Navier-Stokes equation can be expressed as:

NS: ∇(u) = 0

Cont: ρ(u · ∇)u+∇(p)− µeff∇2u = 0,

where ρ is density of the fluid, ∇ denotes the vector dif-
ferential operator, and µeff := µ + µt = µ + 0.09k2/ϵ
represents the effective viscosity, i.e., the sum of molecular
viscosity (µ) and turbulent viscosity (µt). In addition, the
k-ϵ turbulence model can be expressed as:

k: ∇(ρuk) = ∇
[(

µ+
µt

σk

)
∇k

]
+ Pk − ϵ

ϵ: ∇(ρuϵ) = ∇
[(

µ+
µt

σϵ

)
∇ϵ

]
+ (C1Pϵ + C2ϵ)

ϵ

k

where, C1 = 1.44, C2 = 1.92, σk = 1, and σϵ = 1.3
are empirical model constants. In addition, Pk and Pϵ are
production terms. The Reynolds number for this system
is defined as: Re = ρuinletL/µ, where uinlet is the inlet
velocity and L is the characteristic length.

2.2. RANS-PINN architecture and training regime

The RANS-PINN architecture (Fig. 1) uses Fourier neural
operators (Li et al., 2021) with their default hyperparameters
used in Modulus (Mod). For each of the individual output
variables (i.e., u, p, k, and ϵ), we use separate neural net-
works, all sharing the same input variables consisting of po-
sitional coordinates (x, y) and the associated Reynolds num-
ber. These networks are connected to the supervised/data
loss, as well as the nodes of the PDE loss components.

Conventional approaches to training PINNs involve intro-
ducing data and PDE losses simultaneously at the start of the
training phase, often with equal weight multipliers. How-
ever, they often results in noisy training losses, slow con-
vergence, and high validation error. RANS-PINN addresses
these challenges by employing a pre-training step that only
uses the data-driven supervised loss. During pre-training,
each of the individual networks is updated independently
using their corresponding data loss. Following pre-training,
we introduce the PDE constraints into the loss function.
Moreover, to normalize the effect of the individual compo-
nents of the PDE loss function, we scale them by the inverse
of their corresponding residual values. We then use Adam
with a decaying step size (with the initial step size of 0.001
and a decay rate of 0.95) until the training loss converges.

To address the challenges associated with abrupt changes
observed in the turbulence dissipation term ϵ near wall and
free shear regions, we use a logarithmic loss function for
both data and PDE losses associated with ϵ. Everything else
is computed using an MSE loss function. The overall loss
function can then be expressed as:

L = Ldata + LBC + LPDE , (1)
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(a) Pre-training for Warm-start (b) Physics-informed Training

(c) Generalization in Flow Prediction (Velocity Magnitude at 𝑅𝑒 = 5700 which is outside training range)

RANS Simulation (STAR-CCM+) RANS-PINN Prediction

530 𝑚/𝑠

400 𝑚/𝑠

200 𝑚/𝑠

0 𝑚/𝑠

Figure 1: RANS-PINN framework for learning surrogates to predict turbulent flow.

where the PDE loss is defined with weights λi’s as:

LPDE = λ1LNS + λ2LCont + λ3Lk + λ4Lϵ. (2)

3. Results and discussions
3.1. Dataset generation using CFD simulation

In this study, we employ Simcenter STAR-CCM+ (Release
17.02.008) to simulate turbulent flow scenarios using RANS
CFD with the k-ϵ turbulence model. Automatic meshers
have been used for each case, with refinement near walls
for low wall y+, and wall functions for turbulence quanti-
ties. Moreover, we have used wake refinements to simulate
flow around the cylinder (Fig. 2) and the airfoil. The data
generated from the simulation is then normalized using the
non-dimensional version of the underlying dynamics (i.e.,
continuity, Navier-Stokes, and RANS equations). We bring
the range of various variables to a comparable order of mag-
nitude by normalizing the spatial coordinates, the velocity,
and the pressure with the characteristic length, the inlet ve-
locity, and the dynamic pressure, respectively. Later, the
data is denormalized again before visualization.

Mesh (STAR-CCM+) Solution (STAR-CCM+)

Velocity Magnitude (m/s)

Figure 2: Partial view of mesh for flow over a cylinder with
refinement at the cylinder surface and wake regions. This mesh is
also used for point cloud sampling in PINN training, and takes into
account the density variations. Velocity profile shows gradients in
regions of refinement.

True (STAR-CCM+) Predicted

True (STAR-CCM+) Predicted

Pressure (Pa)

(a)

(b)

Velocity Magnitude (m/s)

0               200             400           600

-50960                        0                 38416

Figure 3: Spatial distribution of (a) velocity magnitude and (b)
pressure for a Re = 5600 flow over the cylinder.

3.2. Flow over a cylinder

While the primary objective of this work is to construct
a parametric PINN capable of accommodating varying
Reynolds numbers (Re), an initial investigation is conducted
using single CFD cases (at a fixed Re) to assess the opti-
mal training regime. Flow over a cylinder is a well-studied
problem in CFD, for both laminar and turbulent flows. The
cylindrical obstacle causes a stagnation zone, and the flow
diverts around the obstacle. As a result, flow separation
occurs and vortex shedding can be seen in the wake. How-
ever, steady RANS models average out the periodic un-
steady behaviour, resulting in the time averaged flow field.
In this work, we employ a constant velocity inlet, along

(b)

Log Diff Normalized 

(a)

8 -6 -4                           0   

Figure 4: Prediction error in (a) velocity and (b) pressure. To
highlight the prediction error, we use normalized values of the
logarithm of difference between the true and the predicted values.



RANS-PINN based Simulation Surrogates for Predicting Turbulent Flows

Velocity Magnitude (m/s)

(a) (b)

(c) (d)Data +PDE with log loss Predicted True (STAR-CCM+)

Data + PDE PredictedData only Predicted

0            200                    400                600

Figure 5: Impact of various choices for the loss function. This
figure compares the magnitude of the velocity predicted by a PINN
trained with (a) only data loss, (b) both data and PDE loss, and (c)
both data and PDE loss with a log-loss for ϵ against its true value
from STAR-CCM+ simulation.

with symmetry planes on the top and bottom walls and a
zero pressure outlet. For training, 3000 spatially distributed
CFD data points are randomly sampled, with an additional
3000 points dedicated to PDE losses. Fig. 3a illustrates
the comparison between true and predicted velocity fields,
showcasing the aforementioned flow phenomena. The pres-
sure plots (Fig. 3b) show a high pressure stagnation region
as well as the low pressure flow separation region in both the
true and predicted cases. The differences between true and
predicted velocities and pressure for the log-loss training
case are shown in Fig. 4. Major losses occur around the
cylinder walls, which is known to be a challenging region
for all turbulence models due to steep gradients. Moreover,
the challenges with using only the data loss or the data+PDE
loss but without the logarithmic loss function for ϵ are high-
lighted in Fig. 5. These choices for the loss function yield
flow fields with discontinuities and noise stemming from
the combination of data and physics losses. This is further
reflected in the validation error values reported in Table 1. In
conclusion, the proposed training regime for RANS-PINN
exhibits lower validation losses as well as superior predic-
tive performance.

Table 1: Validation errors for flow over cylinder

LOSS FUNCTION X VEL Y VEL PRESSURE

DATA ONLY 0.205 0.284 0.029
DATA+PDE 0.187 0.474 0.066
DATA+PDE W/ LOG-LOSS 0.014 0.03 0.105

3.3. Test on other geometries: Flow over a backwards
facing step and NACA 2412 airfoil at a single Re

To understand the general efficacy of the proposed training
method, two additional geometries were chosen for investi-
gation. The first geometry involves airfoils which represents
external flows, where a pressure gradient is established be-

Table 2: Validation errors for NACA airfoil (Re = 3× 105) and
backward facing step (Re = 5600).

CASE X VEL Y VEL PRESSURE

NACA 2412 0.091 0.131 0.022
BACKWARDS FACING STEP 0.024 0.146 0.137

Figure 6: Spatial distribution of (a) velocity magnitude and (b)
pressure for a Re = 3× 105 flow around a NACA 2412 airfoil.

tween the top and bottom surfaces due to acceleration of
flow over the top surface (seen in darker red zones of veloc-
ity in Fig. 6a and higher pressure magnitudes in Fig. 6b),
which causes lift. The second geometry consists of a back-
wards facing step (Fig. 7), where a separation bubble form
due to sudden expansion in the channel. This leads to flow
separation and detachment and then re-attachment. Both
cases had no-slip walls and constant velocity inlet boundary
conditions with a zero pressure exit. Low validation error in
Table 2 and visual inspection of Fig. 6 and Fig. 7 show that
the flow fields have been successfully predicted.

3.4. Parametric PINN for flow over a cylinder

After establishing the training regime with these three flow
geometries, we revisit the flow over a cylinder problem for
creating a parametric PINN. The parametric PINN can pre-
dict outcomes of CFD simulations for unseen flow scenarios,
in particular for any given Reynolds number (Re), which de-
pends on the inlet velocity inlet velocities. We achieve this
by including the Reynolds number as an additional input to
the individual neural networks.

In this study, we ran CFD simulations for six different
Reynolds numbers ranging from 2800 to 5600, with uniform
spacing between the values. We sampled 3000 spatial data
points from each simulation and utilized them along with
PDE losses to train the parametric PINN with Re as the

Velocity Magnitude (m/s)
0            51           102          155

True (STAR-CCM+) Predicted

(b)
-1620            0                        2701   

Pressure (Pa)

True (STAR-CCM+) Predicted

(a)

Figure 7: Spatial distribution of (a) velocity magnitude and (b)
pressure for a Re = 5600 flow over a backward facing step.
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True (STAR-CCM+) Predicted

True (STAR-CCM+) Predicted

0               100             200           320

-33075         -11025         0            16987

Pressure (Pa)

Figure 8: Spatial distribution of (a) velocity magnitude and (b)
pressure for a Re = 3140 flow over the cylinder. We have used a
parametric PINN to predict the velocity and the pressure.

underlying parameter. Although each CFD simulation has
61000 mesh data points, we trained the parametric PINN
using only 3000 points, resulting in faster convergence. By
leveraging the parametric PINN, we can now predict flow
fields for any given Reynolds number. This is highly bene-
ficial for design optimization and exploration studies, as it
eliminates the need for additional CFD data to predict pri-
mary flow variables across the entire solution domain. More-
over, compared to the traditional approaches, where each
CFD simulation run takes approximately 24 core minutes,
the parametric PINN can yield results in a near real-time
fashion, significantly accelerating the overall process.

Table 3: Generalization error for parametric PINNs (unseen cases)

CASE X VEL Y VEL PRESSURE

Re = 3140 0.139 0.289 0.164
Re = 5700 0.153 0.200 0.079

Fig. 8a and Fig. 8b show the velocity and pressure distri-
butions for Re = 3140. On the other hand, Fig. 9a and
Fig. 9b display the velocity and pressure distributions for
Re = 5700, which falls outside the training range. In each
validation case, we examined 61000 mesh points. Table 3
presents the overall error metrics for validation in the case
of the parametric PINN.

4. Conclusion
PINN-based approaches to learning surrogate models for
spatiotemporal systems governed by nonlinear PDEs are

(a)

Velocity Magnitude (m/s)

0               200             400           530

(b)
-59535             0         44100        97020

Pressure (Pa)

True (STAR-CCM+) Predicted

True (STAR-CCM+) Predicted

Figure 9: Spatial distribution of (a) velocity magnitude and (b)
pressure for a Re = 5700 flow over the cylinder. We have used a
parametric PINN to predict the velocity and the pressure.

relatively common in the literature. However, despite play-
ing an instrumental role in many real-world applications,
two-equation RANS turbulence models are yet to be in-
tegrated into PINN-based approaches. In this work, we
adopt a novel training regime to ensure the successful in-
tegration of RANS turbulence model physics into PINNs.
Once trained with a limited amount of CFD data, RANS-
PINN can yield accurate predictions of overall flow fields
for a single Reynolds number. Building upon the success-
ful outcomes of these evaluations for three different flow
geometries (flow over a cylinder, a backward-facing step,
and a NACA 2412 airfoil), we develop a parametric ver-
sion of the RANS-PINN to predict flow over a cylinder for
any given/unforeseen Reynolds numbers. The parametric
RANS-PINN, which highlights how whole simulation cases
can be inferred without requiring any CFD data from that
specific Reynolds number, offers significant potential in
solving design exploration and inverse problems for many
real world applications.

Broader impact
The current work focuses on turbulent flow problems with
two-equation turbulence models. While this perspective is
not commonly explored in the PINN literature, these turbu-
lence models hold significant importance in many industrial
and academic settings where a lack of computing resources
prevents the use of Direct Numerical Simulation (DNS) and
Large Eddy Simulation (LES). We can effectively tackle
design and inverse problems in many real-world cases by
employing a turbulent flow PINN, such as RANS-PINN.
The ability to reconstruct a flow field from limited data
can help in real-world problems with limited sensor data.
Moreover, a parametric PINN trained with minimal CFD
data adds significant value to design exploration and opti-
mization by offering a convenient, fast, and computationally
efficient means to predict simulation outcomes.
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A. Appendix: Additional Details

Algorithm 1 Training Regime

Sample data points for data loss, pde loss and validation from mesh
Pretraining individual NNs using data loss
repeat

Normalize weights of PDE loss components using residual values

until Loss is stationary

The training metrics of the parametric PINN has been showed below in figure 10. As seen below, the primary physics errors
are less than 10−4. A brief algorithm of the process has also been shown.

Figure 10: Training metrics of parametric PINN


