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Abstract
PSO-PINN is a class of algorithms for training
physics-informed neural networks (PINN) using
particle swarm optimization (PSO). PSO-PINN
can mitigate the well-known difficulties presented
by gradient descent training of PINNs when deal-
ing with PDEs with irregular solutions. Addi-
tionally, PSO-PINN is an ensemble approach to
PINN that yields reproducible predictions with
quantified uncertainty. In this paper, we intro-
duce Multi-Objective PSO-PINN, which treats
PINN training as a multi-objective problem. The
proposed multi-objective PSO-PINN represents
a new paradigm in PINN training, which thus far
has relied on scalarizations of the multi-objective
loss function. A full multi-objective approach
allows on-the-fly compromises in the trade-off
among the various components of the PINN loss
function. Experimental results with a diffusion
PDE problem demonstrate the promise of this
methodology.

1. Introduction
Scientific Machine Learning (SciML) (Baker et al., 2019)
has attracted tremendous interest over the last few years.
The most well-known SciML algorithm is the physics-
informed neural network (PINN) (Raissi et al., 2019; Cai
et al., 2022), which constrains a neural network to satisfy a
differential equation through an extra loss term. Although
the idea of training neural networks to satisfy differential
equations had been already proposed in the 1990’s (Dis-
sanayake & Phan-Thien, 1994), recent advancements in
high-performance computational infrastructure (Abadi et al.,
2016) and automatic differentiation algorithms (Revels et al.,
2016) have allowed deep PINNs to be employed in realistic
engineering and scientific problems, which has attracted
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great interest to this class of machine learning algorithm.
Unlike traditional numerical methods, PINN allows data
to be assimilated in the model in a natural way, and unlike
data-driven machine learning techniques, PINN introduces
a strong regularizing prior through the use of differential
equations that reflect physical understanding of the problem.

Nevertheless, PINN presents a difficult multi-objective prob-
lem through its complex loss function with multiple terms.
The solution that has been universally adopted at this point
has been scalarization into a single-objective loss function
by adding the different terms. In the original PINN algo-
rithm (Raissi et al., 2019), the loss terms are simply added.
This has been known to generate imbalance among the var-
ious loss terms in problems with complex solutions that
display sharp space-temporal transitions (Wang et al., 2021;
2022; Liao et al., 2022). A more sophisticated scalarization
adds multiplicative weights to the loss terms, which can be
fixed, e.g. based on prior knowledge (Wight & Zhao, 2020;
Jin et al., 2021), or using adaptive weights that change dur-
ing training (Wang et al., 2022). A more complex adaptive
approach weights each training point separately and trains
these weights together with the neural network weights (Mc-
Clenny & Braga-Neto, 2020). These weight-based scalar-
ization approaches improve the performance of PINNs, in
some cases dramatically, but they still fail in sufficiently
complex problems.

In this paper, we explore a different perspective to PINN
training, which treats it as a full multi-objective optimiza-
tion problem rather than relying on linear scalarization of
the loss terms. We do this by using particle swarm optimiza-
tion (PSO) (Kennedy & Eberhart, 1995; Shami et al., 2022),
due to the availability of efficient multi-objective PSO algo-
rithms (Marler & Arora, 2004; Emmerich & Deutz, 2018).
This extends the previous PSO-PINN algorithm (Davi &
Braga-Neto, 2022), which relied on the traditional single-
objective scalarized loss function. This allows us to propose
a new approach for determining the extent of the influence of
each loss component, e.g. the influence of the prior physics
information as opposed to the sample data, which does not
rely on scalarization. Instead, the practitioner is able to train
the model simultaneously over the many possible objectives,
and select the best one suited for the problem by means of a
post-training analysis.
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2. Background
2.1. Deep Neural Networks

Given enough hidden neurons and sufficient training, multi-
layer feed forward networks are universal approxima-
tors(Hornik et al., 1989). This outstanding property lets
this algorithm family evolve in today’s deep learning algo-
rithms(LeCun et al., 2015). Usually, the topology consists
of a feed-forward fully-connected network, the basic archi-
tecture for deep learning. A fully-connected neural network
with L layers is a function fθ : Rd → Rk described in
Equation 1. This function is composed essentially of three
components, the weights, bias, and activation functions.
Among popular choices for the activation function are the
sigmoid function, the hyperbolic tangent function (tanh),
and the rectified linear unit (ReLU) (Glorot et al., 2011).

fθ(x) = W [L−1]σ ◦ (· · ·σ ◦ (W [0]x+b[0])+ · · · )+b[L−1]

(1)
where σ is an entry-wise activation function, W [l] and b[l]

are respectively the weight matrices and the bias correspond-
ing to each layer l, and θ is the set of weights and biases:

θ = (W [0], · · · ,W [L−1], b[0], · · · , b[L−1]) . (2)

This framework allows the approximation of fθ(·) to any ar-
bitrary function g : Rd → Rk. The method for building this
approximation is called training and it is typically guided by
a loss function L : Θ× T → R. Among others, a popular
choice in deep learning is the Mean Square Error(MSE):

L(θ, x) = |fθ(x)− y|2, (3)

where y ∈ Rk is the target value. Several other loss func-
tions have been proposed in the last decades, where a par-
ticular choice may drastically change the behavior of the
neural network model (Janocha & Czarnecki, 2017).

Calculating f(x) and L(θ, x) is commonly called forward
propagation. It will provide enough information for the
subsequent phase, the backpropagation. During the back-
propagation, the network’s weights and bias are updated
based on the gradient of the error given by the loss function:

θt+1 = θt − α
∂L(θt, x)

∂θt
(4)

where θt denotes the learnable parameters of the neural net-
work at iteration t in gradient descent and α is the learning
rate. Again, there were numerous gradient-based optimiza-
tion methods proposed in the last years (Duchi et al., 2011;
Kingma & Ba, 2014; Ruder, 2016).

2.2. Physics-Informed Neural Networks

Consider a non-linear partial differential equation (PDE)

N [u(x, t)] = f(x, t), x ∈ Ω, t ∈ [0, T ]

u(x, t) = g(x, t), x ∈ ∂Ω, t ∈ [0, T ]

u(x, 0) = h(x), x ∈ Ω

(5)

where Ω ⊂ Rn, u : Ω → Rk, N [·] is a spatio-temporal
differential operator, and the source, boundary condition,
and initial conditions are provided by the functions f(·),
g(·), and h(·), respectively. The PINN approach consists in
training a deep neural network uθ(x, t) (where θ contains
the network weights and any unknown parameters of N ) to
approximate the solution u(x, t) of the PDE. This task can
be accomplished by minimizing the losses:

Lr(θ) =
1

Nr

Nr∑
n=1

|N [uθ(x
n
r , t

n
r )]− f(xn

r , t
n
r )|2 (6)

Lb(θ) =
1

Nb
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n
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n
b )]− g(xn

b , t
n
b )|2 (7)
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1

N0
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|uθ(x
n
0 , 0)]− h(xn

0 )|2 (8)

Ld(θ) =
1

Nd

Nd∑
n=1

|uθ(x
n
d , t

n
d )]− yn)|2 (9)

where {xn
r , t

n
r }

Nr
n=1 are collocation points in Ω × [0, T ],

{xn
b , t

n
b }

Nb
n=1 are boundary condition points in ∂Ω× [0, T ],

{xn
0 , 0}

N0
n=1 are initial conditional points in Ω × {t = 0},

and {[xn
d , t

n
d ], y

n}Nd
n=1 are experimental data points, if any.

The collocation, boundary, and initial points are typically
sampled randomly in their respective domains.

The parameter vector θ must minimize all these loss func-
tions; this is clearly a multi-objective optimization problem,
in which the various losses “compete” against each other.
However, in the literature of PINN, single-objective opti-
mization is employed, by linearly scalarizing the multiple
losses into a single loss function:

L(θ) = Lr(θ) + Lb(θ) + L0(θ) + Ld(θ) . (10)

2.3. Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm (Eber-
hart & Kennedy, 1995; Shi & Eberhart, 1999) is a
population-based stochastic optimization algorithm that em-
ulates the swarm behavior of particles distributed in a n-
dimensional search space (Wang et al., 2018). Each individ-
ual in this swarm represents a candidate solution. At each
iteration, the particles in the swarm exchange information
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and use it to update their positions. Particle θ(t) at iteration
t is guided by a velocity determined by three factors: its
own velocity inertia βV (t), its best-known position pbest in
the search-space, as well as the entire swarm’s best-known
position gbest:

V (t+1) = βV (t)+c1r1(pbest−θ(t))+c2r2(gbest−θ(t)) ,
(11)

where c1 and c2 are the cognitive and social coefficients,
respectively, and r1 and r2 are uniformly distributed ran-
dom numbers in range [0, 1). Then the particle position is
updated as

θ(t+ 1) = θ(t) + V (t+ 1) . (12)

Many variations of the PSO algorithm have been proposed,
including a hybrid PSO and gradient-based algorithm known
as PSO-BP(Yadav et al., 2019), which adds a gradient de-
scent component to the swarm framework. This strategy
came particularly handy when applying the method to train
neural networks, since all partial gradients can be computed
efficiently by backpropagation. In the PSO-BP algorithm,
the particle’s velocity is updated via (contrast this to equa-
tion 11):

V (t+ 1) = βV (t) + c1r1(pbest − θ(t))

+ c2r2(gbest − θ(t))− α∇L(θ(t)) ,
(13)

where α is the learning rate and ∇L(θ(t)) is the loss gra-
dient. Therefore, the gradient participates in the velocity
magnitude and direction, by an amount that is specified by
the learning rate.

3. Multi-Objective PSO-PINN
For notational convenience, let us denote the various loss
components by Li(θ), i = 1, . . . ,M . The goal of the orig-
inal PINN algorithm is to find θ∗ that minimizes the sum∑M

i=1 Li(θ). In the multi-objective PINN approach, we
contemplate the problem of finding θ∗ that minimizes all
losses simultaneously. In most cases, this problem does not
have a solution. However, one can build a set of “admissible”
solutions, which is called the Pareto Front. The following
two definitions are used to build the Pareto Front:

Definition 1 (Pareto dominance). A solution θ∗ dominates
another solution θ (denoted as θ∗ ≺ θ) if and only if:

• θ∗ is not worse than θ in any objective, i.e.: Li(θ
∗) ≤

Li(θ), for all i = 1, . . . ,M .

• θ∗ is better than θ in at least one objective, i.e.:
Li(θ

∗) < Li(θ), for some i = 1, . . . ,M .

Definition 2 (Pareto optimality). A solution θ∗ is Pareto
optimal if it is not dominated by any other solution. There-
fore, the set of all Pareto optimal solutions is P := {θ ∈

Θ |∄θ′ ∈ Θ : θ′ ≺ θ}. Meanwhile, the Pareto front F is the
m-dimensional manifold of the objective values of all Pareto
optimal solutions F := {(L1(θ), . . . ,LM (θ)) | θ ∈ P}.

The goals in a MOO problem are often conflicting. Thus
the Pareto front may work as a tool to select the best model
according to the objectives of main interest. The set of
Pareto non-dominated models comprises solutions that can-
not improve any objective without degrading at least one
of the remaining objectives. That particular setup comes in
handy when it is needed to compromise to prioritize between
solutions.

Algorithm 1 Multi-Objective PSO-PINN
Require: α: step size;
Require: β: inertia;
Require: c1, c2: behavioral coefficients;
Require: L[·]: vector of loss functions;
Initialize population Θ;
Ω← [];
pbest(i)← θi, for i = 1, . . . , |Θ|;
gbest ← rand(pbest);
for t = 1, 2, . . . , MAX do:

for i = 1, . . . , |Θ| do:
r1, r2 ← U(0, 1];
V = βV + c1r1(pbest(i)− θi) + c2r2(gbest − θi);
θi = θi + V ;
if Lj(θi) ≤ Lj(pbest(i)) ∀Lj ∈ |L| :
pbest(i)← θi;

end
if pbest(i) dominates Ψ:
Ψ⌢⟨θi⟩;

end
end
gbest ← rand(Ψ);
if coefficient decay:

c1 = c1 − 2c1
t ;

c2 = c2 − c2
t ;

end
return Ω

Here we propose a novel paradigm for PINN training using
MOO. Instead of making a pre- or during-training weight-
ing of the various loss terms, we introduce a post-training
selection strategy. By leveraging the Pareto front generated
by MOO algorithms, solutions can be analyzed based on
their positions on the Pareto front. Our investigation demon-
strates the particular suitability of MOO for the PSO-PINN
algorithm due to its innate decentralized behavior, facili-
tating a search in a multiple objective dimension, and its
built-in population tracking capabilities.

Instead of using the equation 10 to guide the optimization of
the θ parameters of the PINN, one can jointly minimize the
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set of L loss functions, following the Equation 14, where
each objective focuses on minimizing the expectation for all
the respective loss functions:

θ∗ = argmin
θ

E(x,t){L1(θ,x1, t1),L2(θ,x2, t2),

... ,Ln(θ,xn, tn)}
(14)

The multi-objective approach proceeds as follows. An
archive Ψ holds the Pareto front during the training. It
starts as an empty vector and expands as we find new op-
timal points. Unlike in the original PSO-PINN algorithm,
the particle update does not employ a gradient-based com-
ponent. Since we now have a vector of losses, this would
incur multiple gradient evaluations and a costly update. This
losses vector also changes the pbest updates, which now re-
quire equal or smaller values for all the losses of the new
position. After defining the pbest, we check if it dominates
the archive Ψ (following Definitions 1 and 2). If that is the
case, we should append it to Ψ. Lastly, the new gbest should
be selected among the positions in Ψ, since all positions are
theoretically equally suitable solutions. The Algorithm 1
describes in detail the multi-objective PSO-PINN algorithm.

4. Experiments
We demonstrate the performance of MOO-PSO-PINN on
the diffusion equation:

∂u

∂t
= α

∂2u

∂x2
, x ∈ [−1, 1], t ∈ [0, 1] , (15)

where u(x, t) is a function of the position x over the time t,
and α is the parametrization coefficient, commonly known
as the thermal diffusivity constant. The constraints for this
equation, the initial (IC) and boundary (BC) conditions are
given by:

u(0, t) = u(1, t) = 0,

u(x, 0) = sin
(nπx

L

)
, 0 < x < L ,

(16)

where L = 1 is the length of the bar, n = 1 is the frequency
of the sinusoidal initial conditions. As defined here, this
problem is well-posed and has a unique solution:

u(x, t) = e
−n2π2αt

L2 sin(
nπx

L
) . (17)

As said before, the simple accommodation of the losses to
the MOO framework (as defined in 14) would not suffice.
Disconnected to any constraints, the equation 15 has infinite
solutions; in fact, any constant would be a solution.

Therefore, the multi-objective for this experiment is defined
by the loss vector (c.f. equations 6 to 9):

Lθ = {[Lr(θ,xr, tr) + L0(θ,x0)],

[Lb(θ,xb, tb) + Ld(θ,xd, td)]} .
(18)

Notice that we may use as many objectives as we wanted
for this problem, but for the sake of simplicity, we kept
the objectives in a two-dimensional vector. The first one
contains the sum of the residual and original loss. The
second is the sum of the boundaries and data losses.

For this experiment, we set the thermal diffusivity constant
α = 0.4 as the reference solution. Also, we added uniformly
distributed noise in the range [0.0, 0.3) to all data in the
problem, including initial points, boundary points, and data
points. The neural-net architecture was composed of two
input neurons (for x and t), followed by six hidden layers
with eight neurons each, and a single output representing
u(x, t). The PSO parameters β, c1, and c2 were set to 0.99,
0.008, and 0.05, respectively.

Figure 1. Multi-objective PSO-PINN solutions for the Heat Equa-
tion – Each row represents one of the solutions found in the Pareto
Front (Figure 2). On top, the solution minimizes the first loss from
the Loss vector. In the middle, we have the solution most close to
zero, one that minimizes the sum of all in (18). The last row is the
best solution for the boundary and data losses.

Figure 1 displays different solutions through the Pareto front.
The first row (the solution which minimizes the original
and residual losses) fits the proposed PDE well. It does
not completely fit the reference solution, mostly due to
the heavy noise in all data sources. Even though it is the
optimal solution for the PINN loss, it suffers influence from
the other losses in the loss vector (18). In the third row,
we can see that, although the solution fitted the data points,
it was compromised by the noisy data points. Lastly, the
second row depicts the solution with the minimum sum of
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all objective losses. This solution is at the elbow point for
the Pareto Front, as shown in Figure 2. We cannot say that
it is the best solution, since all solutions in the Pareto Front
are optimal, but we might say that this particular solution at
the elbow point holds the best balance among the objectives.

Figure 2. The Pareto front of multi-objective PSO-PINN solutions
for the Heat Equation.

5. Conclusion
This paper introduced new training strategies for PINN en-
semble training. In particular, we extended the PSO-PINN
algorithm, taking advantage of the swarm properties for
multi-objective optimization inherited from the PSO. The
multi-objective PSO-PINN intends to assist the training in
setting the influence from the analytical model and train-
ing data. The multi-objective PSO-PINN can be used to
appraise the problem and define how the prior information
and the available data would best benefit the training.

Much is said about the elasticity of PINNs, which can be ca-
pable of bouncing between a strict mathematical PDE solver
to a more yielding data-driven approach. Until now, this
property was partially explored, most often relying on the
weighting of the total loss function. The approach described
here yields a set of Pareto non-dominated solutions, where
the best can be chosen based on how well-defined the terms
are. For example, if the dataset is considerably noisy, one
may choose a model respecting the physical constraints. On
the other hand, if, for some reason, the environment is not
well defined on the PDE, or the PDE parameters are loosely
fitted, one can choose a more data-driven solution.

Broader impact
The proposed algorithm for training PINNs holds the po-
tential for broader impacts by improving the efficiency and
effectiveness of the training process. Since the algorithm
currently does not involve the use of real-world datasets and
does not directly address ethical aspects, its implications in
terms of societal, economic, or ethical considerations are
limited. Nevertheless, the advancements in training method-
ologies for PINNs can have significant scientific and prac-
tical implications. The algorithm opens avenues for more

accurate and reliable predictions in various domains, such as
physics-based simulations, engineering design optimization,
and scientific research. The enhanced capabilities of PINNs
can contribute to advancements in fields like fluid dynamics,
material science, petroleum engineering and structural engi-
neering, enabling more precise modeling, optimization, and
decision-making processes. Furthermore, the innovation in
training techniques may inspire further research in develop-
ing improved machine learning algorithms and frameworks,
influencing the broader landscape of machine learning and
its potential applications. It is crucial for future studies
to consider the societal and ethical implications that may
emerge as these advanced techniques are deployed in real-
world scenarios.
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