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Abstract
Physics-informed neural networks (PINNs) have
been proposed as a potential route to inverse
modelling or mesh-free alternative to numerical
methods for partial differential equations (PDEs).
However, these problems typically lack ground
truth, making selection of more accurate PINN
models difficult, especially with processes such
as hyper-parameter tuning. This is exacerbated as
PINNs need to balance multiple objectives, com-
prising the governing PDEs, associated bound-
ary/initial conditions, and/or point data. Under
this multi-objective optimization framework, the
ideal PINN solution is one that achieves zero loss
across all components although this is not typical,
resulting in a Pareto set of models. Nonetheless,
there are objectively-preferred models based on
congruence to unknown ground truth. In this con-
text, we propose a Pareto front-based analysis
to help identify better performing models. First,
an approximation to the Pareto set of solutions
with minimal PINN loss is constructed for dif-
ferent balances of loss weights. A loss weight
located on the convex bulge of the Pareto front
is then selected to rescale the training loss across
all solutions. Across our experiments, this rescal-
ing demonstrates a strong correlation between
the rescaled PINN loss and mean squared error
(MSE) relative to simulated ground truth, thereby
illustrating potential PINN model selection.
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1. Introduction
Deep neural networks (DNNs) are able to model complex
relationships, especially in domains such as computer vision
and natural language processing where massive data-sets are
available (Nguyen et al., 2015; Otter et al., 2020). However,
such large data-sets are not available for most physical sys-
tems, and use of physical laws and prior physical knowledge
can be important to improve model performance (Cuomo
et al., 2022; Elhamod et al., 2022). In particular, PINNs
have been proposed as a means of synergizing data and
theory for solving many engineering problems, especially
inverse problems, in recent years (Raissi et al., 2019; Das
& Tesfamariam, 2022; Karniadakis et al., 2021; Cai et al.,
2021).

In prior work, PINNs have been used to model PDEs gov-
erning real-world physical phenomena by training DNNs to
minimize a physics-informed loss comprising initial condi-
tions (ICs), boundary conditions (BCs), and the governing
PDEs itself (Mao et al., 2020; Chiu et al., 2022). PINN
training has correspondingly been formulated as a multi-
objective problem (Jin, 2006), as the satisfaction of ICs,
BCs, and PDEs can be treated as separate objectives (Held-
mann et al., 2023; De Wolff et al., 2022; Rohrhofer et al.,
2021; Bischof & Kraus, 2021; Strelow et al., 2023). How-
ever, in most practical scenarios, the ground truth is not
a priori known. Hence, the quality of any trained PINN
solution can only be judged based on the training loss (Peng
et al., 2020). As the PINN training loss is comprised of mul-
tiple components, the trade-off between different loss com-
ponents is highly complex, and prior literature has shown
that PINNs are susceptible to a mis-match between training
loss and predictive performance. A lower training loss does
not necessarily imply a PINN solution with lower MSE rela-
tive to the ground truth (Gao et al., 2022; Fang, 2022). This
bears similarity to a common machine learning problem
in which one needs to evaluate model performance in the
absence of ground truth (Veldanda et al., 2023). Notably,
this issue is compounded when more components exist, e.g.,
multiple governing equations, or the inverse formulation,
whereby one might have data for various field variables.

While some have analyzed the Pareto front and convergence
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performance of PINN solutions, including the impact of
hyper-parameters (e.g., loss weights, learning rate, activa-
tion function) (Rohrhofer et al., 2021), no prior work to our
knowledge has systematically evaluated the extent to which
PINN models with the lowest training loss can be assumed
to provide the lowest MSE relative to ground truth. This
is a key hurdle in PINN model selection, especially given
how empirical hyper-parameter tuning is a common part of
training.

Hence, in this work, we propose a strategy for comparing
PINN model performance based on insights from construct-
ing a Pareto front during PINN training. This can be useful
for selecting the best model hyper-parameters during train-
ing. Note that our proposed strategy is complementary to
the self-adaptive loss weighting schemes for PINNs (Mc-
Clenny & Braga-Neto, 2020; Wang et al., 2021) because
those strategies improve training convergence, but do not ad-
dress model selection in the context of a mis-match between
training loss and model performance. Analysis of correla-
tions of training loss and MSE from PINN models trained
using different hyper-parameters show that the Pareto front
can provide insights to maximize the correlation between
PINN training loss and MSE, thereby minimizing the im-
pact of any mismatch between training loss and MSE in the
absence of ground truth.

2. Problem Setup
2.1. Physics-Informed Neural Networks

The PINN training loss (LPINN) consists of a weighted
sum of three parts, IC loss (LIC), BC loss (LBC), and PDE
residual loss (LPDE):

LPINN = λICLIC + λBCLBC + λPDELPDE
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where λIC, λBC, and λPDE are the weights that deter-
mine the balance between IC, BC, and PDE residual;
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cation points for calculating the PDE residuals fθ(x, t).

2.2. PINN Hyper-Parameter Tuning Problem

Optimal selection of hyper-parameters (e.g., loss weights,
learning rate) are required for good PINN model perfor-
mance (Yan et al., 2022). Using the Korteweg-De Vries
(KdV) problem as an example (a full description of the prob-
lem is provided in Appendix A), different hyper-parameters
need to be evaluated during PINN training. Examples of
these hyper-parameters are listed in Table 1.

Table 1. Hyper-parameter settings of PINN trained for a KdV prob-
lem.

PARAMETER VALUE

PINN ARCHITECTURE
(x, t)-nN -nN -

nN -nN -u
NODES OF EACH
HIDDEN LAYER nN

{5, 10, 20}
ACTIVATION FUNCTION {ReLU, Sigmoid,Tanh}
PDE LOSS WEIGHT λPDE {0.001, 0.01, 0.1, 1}
LEARNING RATE {0.001, 0.01, 0.1}
MAXIMUM TRAINING
ITERATION

120000

BATCH SIZE
15477

(IC: 77, PDE: 15400)

In Table 1, the numbers nN ’s between input (x, t) and out-
put u in the PINN architecture represent the number of
nodes in each hidden layer, which can be varied. Similarly,
the numbers in brackets corresponding to the batch size
parameter represent the number of IC and PDE collocation
points used during training, which can also be varied. Other
hyper-parameters which can be varied include learning rate,
choice of activation function, and the relative weights for
the terms in the PINN training loss, e.g., λPDE. The value
of λIC is set to 1 and there is zero BC term in this problem.

As shown in Eq. (1), a larger loss weight means putting
more emphasis on the associated loss during training. Differ-
ent combinations of loss weights can impact PINN training
non-linearly. Moreover, it can be difficult to compare differ-
ent PINN models, including with different hyper-parameter
settings, based on their training loss across different loss
weights. In particular, construction of the PINN training
loss with different λPDE complicates the determination of a
PINN model with minimal MSE based solely on their indi-
vidual training loss. In this example, the Spearman correla-
tion coefficient between PINN training loss and MSE across
all the models (trained with different hyper-parameters) is
0.8454 and can be improved. Thus, it is helpful to have a
strategy that can utilize a common loss term with a single
λPDE for consistent comparison across all potential PINN
models (and hyper-parameter combinations).
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3. Pareto Front-Based Model Selection
As PINN models can be trained with different combination
of loss weights, an approximation to the Pareto set of po-
tential solutions with minimal PINN training loss across
different loss weights can be constructed to identify high-
quality non-dominated solutions with various balances of
IC, BC, and PDE. According to Rohrhofer et al. (2021),
the mapping between loss weights and the corresponding
solution on the Pareto set is well-behaved when the Pareto
front is convex, as small changes of loss weights have little
influence on the converged solutions. Thus, it is better to
use a single loss weight, based on an analysis of solutions
with minimal training loss on the convex bulge of the Pareto
front, as a common basis for comparison across all PINN
models, regardless of their training hyper-parameters. The
correlation between this rescaled training loss and MSE of
all the solutions is calculated and discussed in Section 4, in-
dicating that a PINN loss computed with this single rescaled
loss weight can differentiate the models with lower MSE.
Thus, this strategy allows one to compare across different
PINN models in the absence of any ground truth, includ-
ing in determining possible optimal hyper-parameters for
training a PINN model.

The flowchart of the proposed Pareto front-based model
selection strategy is shown in Figure 1 and described below:

Start

Generate solutions of PINN training 

with different hyper-parameters

Select loss weights on the convex 

bulge of the Pareto front

 Rescale PINN training loss for

all solutions using the selected weights 

Output the best hyper-parameters of 

solutions with the lowest rescaled loss

Figure 1. Flowchart of the proposed Pareto front-based model se-
lection strategy.

Step 1: PINNs with different hyper-parameters are trained
to generate potential solutions.

Step 2: A Pareto set of solutions with minimal PINN train-
ing loss for each combination of loss weights is constructed.
Loss weights for PINN solutions with minimal training loss

that are also located on the convex bulge of the Pareto front
are selected as a common rescaling factor.

Step 3: A PINN loss for all generated solutions from Step 1
is re-computed per Eq. (2), based on the selected value from
Step 2 (i.e., λIC rescaled, λBC rescaled, and λPDE rescaled).

LPINN rescaled = λIC rescaledLIC + λBC rescaledLBC

+ λPDE rescaledLPDE

(2)

Step 4: Solutions with the lowest LPINN rescaled from Step
3 are the potential best models with good hyper-parameters.

4. Results
4.1. Strategy Effectiveness for Varied Hyper-Parameters

in KdV Equation

As per the problem described in Section 2, multiple models
trained with different hyper-parameters are presented to val-
idate the effectiveness of the proposed Pareto front-based
strategy for selecting the best-performing models. In the
construction of the approximate Pareto front, all models
obtained are considered, regardless of the difference being
stochasticity in the neural network training process, or dif-
ferences in individual hyper-parameters. A scatter-plot of
LIC and LPDE from PINN models trained with different
hyper-parameters is shown in Figure 2.

Figure 2. Distribution of LIC and LPDE for PINN models trained
with different hyper-parameters for KdV equation. The Pareto
front of solutions with minimal PINN training loss across different
λPDE (λIC = 1) is plotted as a solid line. The cross with specific
color represents the solution with minimal PINN training loss
across all models for different combinations of loss weights. The
red circle represents the solution with minimal MSE across all the
models.

It can be seen from Figure 2 that the solution with PINN
training loss trained with λPDE = 0.1 is on the convex
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Table 2. PINN architecture and training configurations for test problems.

PROBLEM
PINN

ARCHITECTURE
BATCH SIZE

MAXIMUM
TRAINING ITERATION

LEARNING
RATE

CONVECTION-DIFFUSION EQUATION x-10-10-10-u 10000
(BC: 2, PDE: 9998) 100000 0.001

LINEARIZED BURGERS’ EQUATION (x, t)-10-10-10-u 51657
(IC: 257, PDE: 51400) 100000 0.1

KDV EQUATION (x, t)-8-8-8-8-u 15477
(IC: 77, PDE: 15400) 120000 0.01

LID-DRIVEN CAVITY
(x, y)-40-20-20

-[20-20-20-u, 20-20-20-v, 20-20-20-p]
2700

(BC: 200, PDE: 2500) 100000 0.005

Notes: The numbers between input and output represent the number of nodes in each hidden layer. For example, x-10-10-10-u means the PINN architecture has
three hidden layers with 10 nodes between its input x and output u. For the first three benchmarks, the Tanh activation function with Glorot uniform distribution
for weights initialization is used while the learning rate is fixed (Sung et al., 2022). For the lid-driven cavity, the Sin activation function with He uniform
distribution for weights initialization is used while a cosine decay learning rate is used with an initial value of 0.005. A linear activation function is used in the
output layer for all problems. The numbers in brackets for batch size represent the number of IC or BC and PDE collocation points. Full batch is used for training.
All PINN models are implemented in the JAX framework and are run on an Intel Xeon Gold 6336Y 2.40GHz CPU workstation with a NVIDIA RTX A5000 GPU.

bulge of the Pareto front of all solutions with minimal PINN
training loss trained across different λPDE. This particular
value is deemed effective at balancing both LIC and LPDE

for this problem. Thus, λPDE = 0.1 is used for rescaling
the solutions obtained from different hyper-parameters.

When λPDE is 0.1, the rescaled PINN loss and MSE have
high Spearman correlation coefficient of 0.9841, which is a
large increase (16.41%) from the previous value of 0.8454.
In addition, for this particular example, the PINN solution
with minimal MSE has the same λPDE as that selected
through our proposed strategy, further emphasizing the ef-
fectiveness of the strategy for model selection.

4.2. Comparisons for Different Loss Weights

We further seek to demonstrate the generalizability of the
proposed Pareto front-based strategy on a wider range of
problems. We thus select four problems spanning differ-
ent physics (i.e., convection-diffusion equation, linearized
Burgers’ equation, KdV equation, and lid-driven cavity)
(Sung et al., 2022; Chiu et al., 2022; Wong et al., 2021)
and evaluate its ability to identify better models based on
the correlation between the computed rescaled loss and the
MSE (relative to ground truth obtained from high fidelity
numerical simulations). Additional details on the physics
for these problems are provided in Appendix A while the
PINN architecture and training configurations are listed in
Table 2.

This emulates a practical scenario whereby one seeks to
tune the loss weights (i.e., λBC (λIC) and λPDE in Eq. (1)
to find a more accurate PINN model. λBC (λIC) is set to 1,
and λPDE spans 1e-3 to 1e3 (which is a sufficiently broad
range according to our prior experience). Five different

initializations are used for training under each setting and
the distributions of LBC (LIC) and LPDE for the lid-driven
cavity problem are shown in Figure 3. Similar figures for
the other problems are presented in Appendix B Figure 5.

Figure 3. Loss distribution of different runs for the lid-driven cavity
problem. The cross represents the solution with minimal PINN
loss across different runs for each λPDE.

The Pareto front of solutions with minimal PINN loss across
each combination of loss weights is plotted as a solid line
in Figure 3. Next, the loss weight corresponding to the min-
imal PINN training loss that is located on the convex Pareto
front is selected for rescaling the PINN training loss across
all training runs. These loss weights are selected as they pro-
vide the best balance of LBC (LIC) and LPDE. In the neigh-
borhood of the convex bulge, a small improvement in one
of the loss components is typically accompanied by a large
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Table 3. Comparison of Spearman correlation coefficients obtained between MSE and the proposed rescaled PINN loss (rescaled-PINN),
unscaled PINN loss (unscaled-PINN), and residual (Res).

PROBLEM CORRELATION (RESCALED-PINN) CORRELATION (UNSCALED-PINN) CORRELATION (RES)

CONVECTION-DIFFUSION EQUATION 0.9546 0.8840 -0.4597
LINEARIZED BURGERS’ EQUATION 0.9762 0.9422 -0.8561
KDV EQUATION 0.9737 0.6927 -0.9692
LID-DRIVEN CAVITY 0.9227 0.4546 -0.4773

deterioration in the other. Based on the constructed Pareto
fronts, the selected λPDE values for convection-diffusion
equation, linearized Burgers’ equation, KdV equation and
lid-driven cavity problem are determined to be 0.01, 0.1,
0.1, and 1, respectively.

Spearman correlation coefficients are calculated and re-
ported in Table 3, and illustrate the improvement in cor-
relation when a single, carefully chosen λPINN rescaled is
used for rescaling. This improvement is particularly large
for the more non-linear problems (e.g. KdV and Lid-driven
cavity). In addition, we compare the results obtained using
a residual convergence metric typically used in numerical
methods to assess convergence. This was done by using
the PINN to output predictions across a regular grid and
evaluating the residual with a finite difference-based stencil.
The correlation between PINN loss and MSE is similarly
listed in Table 3. While this strategy also requires no a
priori ground truth, we note that the correlations obtained
remain poor, rendering this strategy unsuitable for PINNs.
Further details are provided in Appendix C.

While we propose a Pareto front-based selection strategy in
this work, we can also calculate the loss for all generated
PINN models using a single, chosen λPDE value as per Eq.
(2) based on a single arbitrary value. Hence, the Spearman
correlation coefficients for 7 different loss computations
(spanning 1e-3 to 1e3) and MSE are plotted in Figure 4 for
the lid-driven cavity problem. It can be seen from Figure 4
that it is important to choose an appropriate scaling factor
to maximize correlation between the PINN loss and MSE,
thereby further illustrating the importance of our Pareto
front-based model selection approach.

From our experiments, the proposed strategy allows better
PINN models with lower MSE to be identified across multi-
ple problems. Hyper-parameters of selected solutions can
potentially also be optimal for the problems.

5. Conclusions
In this work, a Pareto front-based PINN model selection
strategy is proposed which can be used for purposes such
as identifying potential optimal hyper-parameters. Build-
ing on the multi-objective nature of the PINN training, a

Figure 4. Correlation between rescaled PINN loss and MSE for
the lid-driven cavity problem.

Pareto set of possible PINN models trained across different
settings with minimal loss can be constructed. Solutions
that map to the convex bulge of the Pareto front, which are
relatively more well-behaved, suggest potential loss weights
that best balance the various components of the PINN train-
ing loss. This can then be used to construct a rescaled loss
across all the PINN models for selection of better PINN
models or optimal hyper-parameters. Our results show that
the rescaled PINN loss is indeed highly correlated with the
MSE relative to simulated ground truth, and that similarly
good correlations are observed for all four benchmark prob-
lems tested (i.e., convection-diffusion equation, linearized
Burgers’ equation, KdV equation, and lid-driven cavity).
To conclude, our study showed that the proposed Pareto
front-based model selection strategy is effective for attain-
ing better PINN models in the absence of a priori knowledge
of the ground truth. Nonetheless, we note that this is a first
exploration of the possibility for identifying better perform-
ing models using insights from the Pareto front and that
further extensions to reduce the computational cost and han-
dle more complicated multi-component objective functions
are still critically needed.
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Broader Impact
Model selection and hyper-parameter tuning of PINNs are
a tough task because PINNs are typically used in situa-
tions without ground truth, complicating evaluation of PINN
model performance. This strategy is expected to be particu-
larly useful as PINNs have also frequently been proposed
as a potential mesh-free alternative to traditional numerical
methods with particular promise for high-dimensional PDE
problems. However, use of PINNs in these problems is
problematic as model selection and hyper-parameter tun-
ing must be done without access to ground truth. Thus,
the selection of potential solutions with minimal MSE is
a fundamental problem. This paper proposes a new strat-
egy to select models based on maximizing the correlation
between PINN training loss and MSE by leveraging the
Pareto front generated by re-formulating PINNs as a multi-
objective problem. Note that the correlation between PINN
loss and MSE as obtained by our proposed strategy is con-
sistently high across different problems according to the
experimental results, which means that this approach may
be generally applicable, although more verification needs to
be done. In addition, the PINN loss of the experiments in
this work only has two components, i.e., BC (IC) loss and
PDE loss. When more components such as PDE losses of
multiple governing equations and data loss are considered
for training, the implementation of the strategy need to be
further investigated.
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A. Definition of Problems
A.1. Korteweg–De Vries (KdV) Equation

KdV equation is a nonlinear partial differential equation which describes the evolution of phenomena such as wave
propagation. The differential equation of the physical system and corresponding IC are described in Eq. (3) and Eq. (4),
respectively.

f =
∂u(x, t)

∂t
+ v1u(x, t)

∂u(x, t)

∂x
+ v2

∂3u(x, t)

∂x3
= 0

v1 = 1, v2 = 0.001, x ∈ [0, 1.5], t ∈ [0, 2]

(3)

u(x, 0) =
3c1

cosh2[a1(x− x1)]
+

3c2

cosh2[a2(x− x2)]

a1 =
1

2

√
c1
v2

, a2 =
1

2

√
c2
v2

, c1 = 0.3, c2 = 0.1,

x1 = 0.4, x2 = 0.8, v1 = 1, v2 = 0.001

(4)

A.2. Convection-Diffusion Equation

The steady-state convection-diffusion equation describes the steady-state behavior when particles, energy, or other physical
quantities are transported in a convective-diffusive physical system. The differential equation of the physical system and
corresponding BCs are described in Eq. (5) and Eq. (6), respectively.

f = v
du(x)

dx
− k

d2u(x)

dx2
= 0

v = 6, k = 1, x ∈ [0, 1]

(5)

u(0) = 0, u(1) = 1 (6)

A.3. Linearized Burgers’ Equation

Linearized Burgers’ equation is a simplified partial differential equation that is common across multiple areas in applied
mathematics. The differential equation of the physical system and corresponding IC are described in Eq. (7) and Eq. (8),
respectively.

f =
∂u(x, t)

∂t
+ v1

∂u(x, t)

∂x
− v2

∂2u(x, t)

∂x2
= 0

v1 = 1, v2 = 0.02, x ∈ [−1.5, 6.5], t ∈ [0, 2]

(7)

u(x, 0) = me−(kx)2 , k = 2, m = 10 (8)

A.4. Lid-Driven Cavity

Lid-driven cavity is a well-known benchmark for viscous, incompressible fluid flow. The governing equations of lid-
driven cavity are the steady-state, incompressible N-S equations. The differential equations of the physical system and
corresponding BCs are described in Eq. (9) and Eq. (10), respectively

f1 =
∂u(x, y)

∂x
+

∂v(x, y)

∂y
= 0

f2 = u(x, y)
∂u(x, y)

∂x
+ v(x, y)

∂u(x, y)

∂y
+

∂p(x, y)

∂x
− 1

Re

[∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2

]
= 0

f3 = u(x, y)
∂v(x, y)

∂x
+ v(x, y)

∂v(x, y)

∂y
+

∂p(x, y)

∂y
− 1

Re

[∂2v(x, y)

∂x2
+

∂2v(x, y)

∂y2

]
= 0

x ∈ [0, 1], y ∈ [0, 1]

(9)
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u(x, 1) = 1, v(x, 1) = 0

u(x, 0) = 0, v(x, 0) = 0

u(0, y) = 0, v(0, y) = 0

u(1, y) = 0, v(0, y) = 0

(10)

where Re = 200 is the Reynolds number.

B. Scatter-Plots for Section 4.2

(a) Convection-diffusion equation (b) Linearized Burgers’ equation (c) KdV equation

Figure 5. Loss distributions for each test problem. The cross represents the solution with minimal PINN loss across the five different runs
for each value of λPDE.

Based on the constructed Pareto fronts, the selected λPDE values for convection-diffusion equation, linearized Burgers’
equation, KdV equation and lid-driven cavity problem are determined to be 0.01, 0.1, 0.1, and 1, respectively. For the
linearized Burgers’ equation problem, the PINN solution with the lowest MSE also corresponds to the λPDE as obtained by
this Pareto front-based analysis, similar to the KdV problem. However, the PINN solution with the lowest MSE for the
convection-diffusion and lid-driven cavity problems were obtained using a λPDE of 1.0 and 0.1 respectively.

C. Comparison to Residual Convergence Metric
To further illustrate the effectiveness of the proposed Pareto front-based model selection strategy, a residual-based conver-
gence metric is also used for comparison. The residual is a conventional metric used to monitor convergence in numerical
methods, including in domains such as computational fluid dynamics (Wang et al., 2013; Jadoui et al., 2022). When the
residual decays to a small value, the solution is typically regarded as converged.

In this work, the residual of the physical system is calculated by Eq. (11)

Residual =
1

ns

ns∑
i=1

∣∣∣fresidual(x1, x2, · · · , xd;
∂u

∂x1
,
∂u

∂x2
, · · · , ∂u

∂xd
;
∂2u

∂x2
1

,
∂2u

∂x1∂x2
, · · · , ∂2u

∂x1∂xd
; · · ·

)∣∣∣
∂u

∂x1
=

u(x1 +∆h, x2, · · · , xd)− u(x1, x2, · · · , xd)

∆h
= D u(x1)

∂2u

∂x2
1

=
D u(x1 +∆h)−D u(x1)

∆h
= DD u(x1, x1)

· · ·

(11)

where ns is the number of the discrete sample locations; fresidual(·) is the sum value of the ordinary or partial differential
terms of the physical system in Eqs. (3), (5), (7), and (9), where the value of the ordinary or partial differential terms is
calculated through the finite difference method using the PINNs’ prediction (i.e., u(x), u(x, y), or u(x, t)).

The relationship between residual and MSE for all the solutions obtained for each benchmark problem are displayed in
Figure 6. Spearman correlation coefficients obtained between MSE and the proposed rescaled PINN loss, unscaled PINN
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loss, and residual are also calculated for comparison as listed in Table 3. As shown in Table 3, the correlation coefficients
between rescaled PINN loss and MSE are high for all the benchmarks, whereas the unscaled PINN loss and MSE or the
residual and MSE exhibit much lower correlations. This further illustrates the effectiveness of the proposed strategy for
identifying solutions with lower error.

(a) Convection-diffusion equation (b) Linearized Burgers’ equation

(c) KdV equation (d) Lid-driven cavity

Figure 6. Scatter-plot of residual and MSE for each benchmark problem.


