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Abstract
Latent force models offer an interpretable alterna-
tive to purely data driven inference in dynamical
systems. Uncertainty in the output variables is
treated by deriving the kernel function of the low-
dimensional latent forces directly from the dy-
namics. However, exact computation of posterior
kernel terms is rarely tractable, requiring approxi-
mations for complex scenarios such as nonlinear
dynamics. In this paper, we overcome these is-
sues by posing the problem as meta-learning a
general class of latent force models. By employ-
ing a deep kernel and a sensible embedding, we
achieve extrapolation from a synthetic dataset to
real experimental datasets. Moreover, our model
is the first of its kind to scale up to large datasets.

1. Introduction
Differential equations are mathematical models that describe
the change of a function with respect to variables such as
time. They play a central role in the sciences, providing
a grounded method of making historic and future predic-
tions of complex systems. In a machine learning context,
this predictive power makes them excellent inductive bi-
ases. Latent force models (LFMs) were introduced when
Lawrence et al. (2006) modelled a network of genes inter-
acting with a common protein in the biological process of
transcriptional regulation with ordinary differential equa-
tions (ODEs). LFMs are probabilistic models that involve
low-dimensional latent forces in the underlying dynamics
of a system. This enables handling high-dimensional and
nonlinear dynamics in the presence of noise.

LFMs assume a joint Gaussian process prior over the la-
tent forces and observed outputs, whose covariance is de-
termined by the model dynamics as described by the dif-
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ferential equations. Inferring latent forces then requires
computing their posterior distribution, which is analytically
tractable only for a small set of scenarios. In the remain-
ing cases, which tend to be nonlinear or nonstationary dy-
namical systems, the posterior requires some approxima-
tion. Whilst existing approximations, such as using an ODE
solver (Moss et al., 2021), variational inference (Ward et al.,
2020), and deep GPs (McDonald & Álvarez, 2021), re-
solve inference in nonlinear settings, they all suffer from
intractabilities for a range of larger scale, real-world scenar-
ios. Indeed, it is often desired to train many LFMs simulta-
neously in a multi-task setting. For example, in the case of
genomics, we often wish to make inferences over thousands
of genes or interaction subnetworks.

In this work, we introduce the Deep Kernel Latent Force
Model, DKLFM, a novel meta-learning method for multi-
task learning under physically-inspired inductive biases. We
avoid numerical solving and any variational approximations
by instead learning the ODE dynamics in a deep kernel (Wil-
son et al., 2016). Our framework exploits the representative
power of a deep Fourier neural operator (Li et al., 2020)
to produce a function embedding for each task. Given an
instance consisting only the input mesh, for example time,
and the observed functions’ embedding, DKLFM infers
the associated latent forces with standard Gaussian process
conditioning. This makes our approach much faster than
training an LFM on individual tasks. DKLFM can model
complex nonlinear dynamics and even solves multivariate
problems such as partial differential equations which were
previously computationally infeasible for large datasets.

2. Preliminaries
Gaussian processes Gaussian processes are stochastic
processes commonly used as priors for latent functions in
Bayesian machine learning that map inputs x ∈ RD to pre-
dictions f(x) ∈ R. A GP prior, f ∼ GP(m(x), κ(x,x′)),
is described by its mean function m(x) and kernel function
κ(x,x′). If the model specifies a Gaussian likelihood for
observations y, meaning y ∼ N (f, σ2), the posterior distri-
bution for training data X,y is analytically tractable. The
marginal likelihood has a closed form expression, enabling
gradient-based optimisation over the hyperparameters.
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Figure 1. Schematic of DKLFM. First, a dataset of latent force instances is created by sampling the latent forces and differential equation
parameters before solving the forward solution. The simulated functions are embedded by aggregating the output state of a neural operator.
A deep kernel is learned to represent the convolution operator of an arbitrary LFM. For training tasks, the model minimises the loss in
Equation 1 with access to simulated latent force data. For test tasks, the latent forces are unobserved and inferred via the cross-covariance
only, as in a typical LFM scenario. The diagram shows one task, where in reality we would train over batches of tasks.

Deep Kernel Learning Deep kernel learning as presented
by Wilson et al. (2016) constitutes an attempt to combine the
representation learning capabilities of deep neural networks
with the non-parametric nature of Gaussian processes. A
neural network is used to map an input x into a latent space
yielding a vector NN(x) ∈ RD. This representation is then
fed into a base kernel κ(·, ·) (such as an RBF kernel) to yield
the covariance between inputs κ(NN(x),NN(x′)).

Neural Operators Neural Operators (Kovachki et al.,
2021) are neural representations of mathematical operators.
They are therefore mesh-invariant and capable of represent-
ing function spaces. Our research employs the Fourier vari-
ant of these models (Li et al., 2020), which involves learning
point-wise transformations in the Fourier domain in order
to learn a global convolution in the physical domain.

3. Deep Kernel Latent Force Models
We assume a dataset of N tasks {xn,yn(x), fn(x)}Nn=0,
where xn ∈ RT×D denotes collectively T observed D-
dimensional input points and which may be temporal (D =
1) or spatio-temporal (D > 1). Our output observations,
yn ∈ RP×T is the set of P function outputs, and fn ∈ RT

is the latent force at the observed input points. We split
the dataset into train and test tasks, where train tasks have
access to both the latent forces data and observed outputs,
while test tasks only have access to the observed outputs. A
model overview is illustrated in Figure 1.

We model the latent force via a latent function h mapping
from the inputs x and a task representation emb(yn) to the
latent force f . We assign a Gaussian process prior to h and
use a Gaussian likelihood for the latent force, i.e.

h ∼ GP(mh(·), κ(·, ·)) (prior)

f ∼ N (h, σ2) (likelihood)

where mh is the mean function of the GP prior and κ is
its kernel. Under the LFM assumptions, the distribution of
y is implicitly determined via the joint distribution of the

latent function and the outputs. More specifically, the latent
function outputs at the observed inputs x and the outputs y
are jointly Gaussian distributed as

h,y ∼ N
([

µh

µy

]
,

[
Khh Khy

Kyh Kyy

])
, (joint)

where the mean vectors and covariance matrices are ob-
tained by evaluating the mean and kernel function of h as
well as a dedicated mean function my for the outputs.

As described above, the latent function h operates on
both the inputs x and a task representation emb(yn). Its
mean and kernel function thus receive a concatenation
z = emb(yn) ⊕ x as input. The mean vectors µh,µy

are evaluations of the mean function mh of the GP prior on
h and a dedicated mean function my for the outputs, as in

µy = my (emb(yn)⊕ x)

Kyy = κ (emb(yn)⊕ x, emb(yn)⊕ x) .

The cross-covariance Kyh and covariance Kyy are deter-
mined similarly using kernel κ, however the task representa-
tion emb(yn) is replaced by zeros in the inputs correspond-
ing to the index set of f . Similarly, the mean µh is the
evaluation of a dedicated mean function µh = mh(0⊕ x).

In an LFM, the kernel function is derived from a set of
differential equations. Here, in order to achieve sufficient
expressivity in the general case where the equations cannot
be solved, the kernel κ is defined to be a deep kernel (Wilson
et al., 2016) with a neural network mapping the inputs to
latent representation vectors before feeding them into a base
kernel. We use a simple MLP NN : RL1 → RL2 , and an
RBF for the base kernel. The mean functions mh,my are
constant functions with learned output c.

The trainable parameters in our model are optimised by
maximising the marginal likelihood of the observed outputs
and latent forces for training tasks. The marginal likelihood
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Figure 2. DKLFM infers the protein concentration of transcription
factor p53. The ground truth was published by Barenco et al.
(2006). The model had been trained on a simulated dataset.

has the closed form:

p(y, f) =

∫
p(y, f ,h) dh

= N (f |µh|y,Kh|y + σ2I)N (y |µy,Kyy). (1)

Here, µh|y and Kh|y are defined as

µh|y = µh +KhyK
−1
yy y (2)

Kh|y = Khh −KhyK
−1
yy Kyh (3)

At test time, we infer the unobserved latent forces using the
conditional GP defined by Equations 2 and 3. The posterior
predictive distribution gives the distribution over the outputs,
which is the conditional GP of the same form.

We seek an output-specific instance embedding in the input
space of the GP, otherwise it cannot distinguish between
the P outputs. In keeping with the LFM paradigm, this
embedding is over the outputs only, with the expectation that
latent forces can be completely determined by the learned
dynamics. To maintain the flexibility of GPs, our embedding
must be input resolution-invariant. We therefore apply the
Fourier neural operator on our observations, taking the mean
over all input dimensions to yield our instance embedding.
The mesh-invariance of our method enables super-resolution
inference; test cases can be at an arbitrary resolution higher
than the training data, as we demonstrate in Section 4.2.

4. Experiments
In this section we investigate the performance of DKLFM
on ODE- and PDE-based LFMs.

4.1. Transcriptional Regulation

We can model the time derivative of mRNA, yj(t), of gene
j with respect to its latent regulating transcription factor
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Figure 3. DKLFM infers the predator-prey relationship in a Lotka-
Volterra setup. The model has only been trained within a time
range denoted by the grey shaded region.

protein fi(t) (Barenco et al., 2006; Lawrence et al., 2006):

dyj(t)
dt

=

basal rate︷︸︸︷
bj +sj

response︷ ︸︸ ︷
G(f(t))−

decay term︷ ︸︸ ︷
djyj(t), (4)

where bj is the base transcription rate of gene j, sj is the
sensitivity, or a response factor to the transcription factors.
In this case, we set G to the softplus function to enforce
positivity: G(f(t)) = log(1+exp(f(t))). This nonlinearity
renders an exact solution intractable.

We generate a synthetic dataset of 500 instances by sampling
parameters for Equation 4 from an empirical distribution
of parameters, which were learnt by running Alfi (Moss
et al., 2021) on the p53 network of genes experimentally
measured by Barenco et al. (2006). Next, the latent force
is sampled from a GP prior with RBF kernel, and the ODE
is solved yielding a single instance. Gaussian-distributed
random noise is added to the latent forces.

In Figure 2, we demonstrate how DKLFM is able to extrap-
olate from a purely simulated dataset to a real microarray
dataset from (Barenco et al., 2006). The data pertains to
transcript counts for five targets of the transcription factor
p53 over seven timepoints.We show our inferred transcrip-
tion factor concentration alongside the unobserved ground
truth. We also show intra-task extrapolation in Figure 3
for Lotka-Volterra instances, where predator-prey dynamics
are governed by du(t)

dt = αu(t) − βu(t)f(t), with growth
rate α, decay rate β, and predator count (latent force) f(t).
Using a periodic base kernel, we infer on an expanded input
domain compared to the training data.

4.2. Reaction Diffusion Equations

PDE-based LFMs are more complex; solving these numeri-
cally involves a mesh–therefore suffering the curse of dimen-
sionality. Here, we demonstrate that DKLFM can be used
to fit reaction-diffusion equations with a moderately-sized
dataset of 500 low-resolution instances. We use the example
of embryogenesis, where spatiotemporal RNA expression,
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Figure 4. DKLFM infers the unobserved latent force for the reac-
tion diffusion experiment. We trained on a 21× 21 spatiotemporal
grid and tested on a 40× 40 grid to illustrate super-resolution.

Table 1. Comparison to baseline models. For the DKLFM, we
train on a dataset of 256 and 500 instances for the ODE and PDE
settings respectively. We average the MSEs over 20 instances.
Models were run on an NVIDIA GeForce RTX 4090 GPU. The
times corresponds to the inference time per-instance.

Model Latent MSE Output MSE Time (s)

Transcriptional Regulation ODE
Alfi 0.187 0.117 3.27

DeepLFM - 0.332 12.6
DKLFM 0.116 0.201 0.0118

Reaction Diffusion PDE
Alfi 0.08859 0.0215 > 10m

DeepLFM - 0.356 96.7
DKLFM 0.633 0.720 0.0523

y(x, t), is modeled by the PDE (López-Lopera et al., 2019):

∂y(x, t)

∂t
= Su(x, t)− λy(x, t) +D

∂2y(x, t)

∂x2
, (5)

where S is the production rate, u(x, t) is the 2D latent force,
λ is the decay rate and D is the diffusion rate.

We simulate a dataset from Equation 5 by implementing
the Green’s function approximation (López-Lopera et al.,
2019). We then sampled parameters empirically from the
Drosophila gap gene dataset from Becker et al. (2013), and
latent forces from a GP prior with varying lengthscales.

In Figure 4, we demonstrate the super-resolution perfor-
mance of inferring latent forces for a test task. Moreover,
DKLFM is orders of magnitude faster than comparable mod-
els at inference time, as shown in Table 1. Since DKLFM
solves many LFMs simultaneously rather than a single in-
stance, we plot the mean squared error as a function of
dataset size in Figure 5. This demonstrates that with 256

Figure 5. MSE for 20 test ODE tasks plotted against training
dataset size, illustrating the point at which it becomes economical
to use DKLFM.

instances, we achieve similar performance to training indi-
vidual LFMs with Alfi, a numerical approximation. This
dataset size is considerably less than a typical experimental
scenario involving thousands of genes.

Related work Ward et al. (2020) employ a state-space
model for approximating the posterior of a non-linear LFM.
The authors use autoregressive flows to construct a joint den-
sity of the state using variational inference. This approach
suffers from an over-confidence prevalent in such black-
box variational approaches. Moss et al. (2021) avoided the
complex derivations of kernel functions by sampling from
the GP prior and numerically solving with an ODE or PDE
solver. The use of a solver renders this approach computa-
tionally intensive and inappropriate for a multi-task setting.
McDonald & Álvarez (2021) tackles a similar problem of
handling highly non-linear and non-stationary dynamics.
This is achieved by constructing a deep GP (Damianou &
Lawrence, 2013) with a convolution of an RBF kernel with
the Green’s function of the ODE at each layer. This deep
representation makes the model applicable to nonlinear dy-
namics, but not directly to PDEs or multi-task settings.

5. Conclusion
We have introduced DKLFM, a novel meta-learning frame-
work for LFMs. Combining the deep kernel’s expressivity
with the neural operator’s ability to embed functions, we
enable fast inference of latent forces by conditioning only
on observed output data. DKLFM is the first exact inference
framework for learning the solution operator for any nonlin-
ear LFM. We achieve this by learning the cross-covariance
between latent forces and observations corresponding to
the differential equation from a simulated set of instances.
DKLFM explicitly treats the uncertainty in the latent forces
and output functions. Active learning is therefore possible
by query input points where the output function or latent
forces have high uncertainty.
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The performance and speed is limited by generation of sim-
ulated dataset–easily parallelised–and the inversion of an
T×T matrix which has computational complexity of O(T 2)
or O(TM2) if an inducing points are used. Once trained
on a simulated dataset, inference for unseen instances is
immediate compared to a standard LFM, which requires an
optimisation loop for determining kernel parameters.

Broader impact
We hope to see these models being used and distributed like
large language models (Shanahan, 2022), where a user can
use a pretrained DKLFM to make latent force inferences
on their dataset, with or without fine-tuning. This would
be extremely useful in the biological sciences, where the
experimental datasets are quite small and noisy. However,
the creation of a dataset–especially where it involves solv-
ing a PDE–can be computationally time-consuming and
therefore consume substantial computational resources. As
with all machine learning models of this kind, care must be
taken to ensure that bias in the training data is considered.
There could be sensitive applications (e.g. medical time-
series) where blind faith in the inferred forces can lead to
potentially detrimental effects on the patient.
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López-Lopera, A. F., Durrande, N., and Alvarez, M. A.
Physically-inspired gaussian process models for post-
transcriptional regulation in drosophila. IEEE/ACM trans-
actions on computational biology and bioinformatics, 18
(2):656–666, 2019.
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