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Abstract
Characterization of geologic heterogeneity at a
geological carbon storage (GCS) system is cru-
cial for cost-effective carbon injection planning
and reliable carbon storage. With recent advances
in computational power and sensor technology,
large-scale fine-resolution simulations of multi-
phase flow and reactive transport processes have
been available. However, traditional large-scale
inversion approaches have limited utility for sites
with complex subsurface structures such as faults
and microfractures within the host rock matrix.
In this work, we present a Bayesian inversion
method with deep generative priors tailored for
the computationally efficient and accurate char-
acterization of GCS sites. Self-attention gener-
ative adversarial network (SAGAN) is used to
learn the approximate subsurface property (e.g.,
permeability and porosity) distribution from dis-
crete fracture network models as a prior and ac-
celerated stochastic inversion is performed on the
low-dimensional latent space in a Bayesian frame-
work. Numerical examples with a synthetic frac-
ture field with pressure and heat tracer data sets
are presented to test the accuracy, speed, and un-
certainty quantification capability of our proposed
joint data inversion method.

1. Introduction
For the subsurface inverse problem (Carrera et al., 2005;
McLaughlin & Townley, 1996; Oliver et al., 2008), spa-
tially distributed geologic parameters such as permeability
and porosity are estimated from noisy and sparse hydrogeo-
physical and geomechanical measurements such as pressure,
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temperature, displacement, seismic responses, and so on.
Due to ill-posedness in the inverse problem, probabilistic
frameworks have been implemented in order to account for
the uncertainty that provides both unknown subsurface pa-
rameters and their corresponding uncertainty in a Bayesian
statistical framework (e.g., Kitanidis, 1995; 2010; Lee et al.,
2016). Typically pressure measurements from injection-
extraction well operations are used for the site characteriza-
tion, but unless many injection/extraction/observation wells
are available, the subsurface characterization with sparse
pressure measurements leads to poor predictions of other
relevant quantities such as reactive transport. To overcome
this issue, different sensing data can be used for joint in-
version of pressure, saturation, temperature, and seismicity
to identify the subsurface geologic connectivity during the
CO2 sequestration operations (Chen et al., 2018).

Still, one of the challenges in subsurface characterization
is to identify highly heterogeneous permeability fields such
as reservoirs with fracture networks. For such cases, tradi-
tional techniques using the Gaussian prior lead to smoothed,
low-resolution images of subsurface properties with high
estimation uncertainty due to the diffusive nature of the gov-
erning equations. Machine learning techniques such as deep
generative models (Kang et al., 2022; 2021; Yoon et al.,
2022; Kadeethum et al., 2021) have been actively studied to
enforce the subsurface solution space on the relevant prior
distribution constructed through multipoint geostatistics-
based training images.

In this work, we present an application of an inverse model-
ing method based on the self-attention generative adversarial
network (SAGAN) (Zhang et al., 2019) for characterizing a
subsurface reservoir field at a reduced computational cost
with improved accuracy compared to traditional inversion.
The multiphysics model MOOSE-FALCON (Podgorney
et al., 2021) is combined with our proposed Bayesian latent
space inversion method. A synthetic application with single-
phase flow pressure and heat tracer data is considered in this
work for a two-dimensional, strongly heterogeneous per-
meability field estimation. Inversion of synthetic injecting
tests is performed to show the usefulness and practicality of
the proposed approach for geological carbon storage (GCS)
sites characterization with reasonable accuracy before the
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proposed method is extended and applied to 3D GCS appli-
cations.

2. Method
2.1. Deep Generative Modeling

Deep generative models (Goodfellow et al., 2014) have
been studied because of their capability to approximate data
distributions from training samples and generate new sam-
ples from the approximated data distribution in an efficient
fashion. We use the self-attention generative adversarial
network (SAGAN), which applies self-attention mechanism
and spectral normalization (Zhang et al., 2019). SAGAN
creates samples with detailed features from low-dimensional
latent variables, which provides a solution for learning the
distribution of subsurface properties such as fracture net-
works. 50,000 images with randomly generated fractures
were used for training. There are 30 fractures at 0◦, 30
fractures at 90◦, and 40 fractures at 135◦ in each image, and
the length of the fractures ranges from 5 to 20 pixels, similar
to the images shown in Figure 3. The inversion solutions
are constrained to the learned latent space while consistent
with the observations. This will lead to our deep generative
model-based parameterization of the permeability field:

s = G(z) (1)

where s is the permeability field and z is a k (≪ m)-
dimensional (m represents the dimension of the permeabil-
ity field) latent variable constructed from SAGAN. Using
our generator G(z), the variable z in the context of the inver-
sion problem represents the low-dimensional representation
of s.

2.2. Bayesian Inversion using Deep Generative
Modeling

We use a Hierarchical Bayesian approach combined with
SAGAN in this work for the inverse problem solver. The
forward problem with the input of permeability field s can
be defined in the form of the relationship

y = h(s) + ε (2)

where y is the observation (e.g., pressure, saturation, tem-
perature, and displacement), ε is the observation and model
uncertainty noise such as a Gaussian distribution with mean
zero ε ∼ N (0,R). Here, R is the model/observation error
matrix and h is the forward map. The inverse problem equiv-
alent of Eq. 2 can be defined as a problem with unknown
m-dimensional variable s (permeability) and n (noisy) ob-
servation y (pressure, temperature, and displacement). The
Bayes’ rule allows us to evaluate a posterior distribution of
s via

p(s|y) ∝ p(y|s)p′(s) =
∫
θ

p(y|s)p′(s|θ)p′(θ)dθ (3)

where p′ (·) represents the prior probability and θ is a set of
hyperparameters that models s in a hierarchical Bayesian
framework.

In particular, with the generator G, we can constrain variable
z to follow a Gaussian distribution to ensure the regularity
of the latent space:

z ∼ N (0,Σ) (4)

We also assume that G is a deterministic map from z to s
and the hyperparameter p′(θ) such as neural network model
parameters follows a delta distribution:

θ = δ(θ − θ̂) (5)

This allows us to rewrite Eq. 3 in the form

p(z|y) ∝ p(y|z)p′(z)
∝ exp

(
−(y − h(G(z)))⊤R−1(y − h(G(z)))

)
· exp

(
−z⊤Σ−1z

)
(6)

We explore this posterior equation to identify the latent
variables consistent with observations through sampling or
Bayesian approaches. Here we use a Bayesian approach to
find the maximum a posteriori (MAP) estimate, which is the
mode of the posterior distribution.

This task will require the computation of Jacobian Jl and at
the lth iteration the computation is given by

Jl =
∂h(G(z))

∂z

∣∣∣∣
z=zl

=
∂h

∂s

∣∣∣∣
s=G(zl)

∂s

∂z

∣∣∣∣
z=zl

= Jh|s=G(zl) JG

∣∣∣
z=zl

(7)

Note that ∂s
∂z can be evaluated analytically using automatic

differentiation (AD). This information can be provided at
no additional computational cost in common libraries such
as TensorFlow and PyTorch. Since the dimension of z is
assumed to be significantly smaller than the dimension of
s, e.g., dim(z) ≤ 100, we can also use a finite difference
formulation to calculate the Jacobian matrix as an alternative
to AD.

The workflow of coupling SAGAN and Bayesian inversion
is shown in Figure 1. Using the trained generator, the 128 ×
128 permeability field is generated with 16 latent variables.
FALCON is then used as a forward model h in Eq. 2 and
latent variables are updated using Bayesian inversion to
maximize the negative logarithm of Eq. 6

3. Synthetic Example Setup
The domain for heterogeneity characterization is a syn-
thetic two-dimensional depth-integrated deep formation. As
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Figure 1. The workflow of coupling SAGAN and Bayesian inver-
sion

shown in Figure 2, a 640 m × 640 m domain was discretized
into 128 × 128 meshes. This image shows fractures with 3
orientations: 0◦, 90◦, and 135◦, and this image was not used
for training. A constant pressure of 34 MPa and 30 MPa
was imposed on the western and eastern boundaries, respec-
tively. A constant temperature of 473.15 K and 423.15 K
was applied to the western and eastern boundaries, respec-
tively. One injection well was placed at [190 m, 180 m] for
transient simulations and nine monitoring wells were used
for observation. To simplify the problem formulation, we
inject heat tracer (lower temperature water than one in the
deep formation) into the aquifer, and pressure and tempera-
ture data were measured every 100 s at the monitoring wells.
The injection rates linearly increased from 0 to 5 g/s from 0 s
to 1000 s. The injection temperature was a constant value of
323.15 K. The values of the material parameters are shown
in Table 1. Permeability and porosity are heterogeneous
as shown in Figure 3, using the same image but assigning
different values. For permeability, the fractures (white lines)
were assigned 10−14 m2, and other areas were assigned
10−16 m2. For porosity, the fractures were assigned 10−3,
and other areas were assigned 10−4.

Figure 2. Model settings. 34 MPa pressure and 473.15 K tempera-
ture were applied to the western boundary. 30 MPa pressure and
423.15 K temperature were applied to the eastern boundary. The
red circles represent monitoring wells, and the red cross shows the
injection well location.

Table 1. Material parameters.

Parameter Unit Value

Permeability m2 heterogeneous
Porosity − heterogeneous
Density kg/m3 2640

Specific heat J/kg ·K 790
Thermal conductivity W/m ·K 3.05

Figure 3. Permeability and porosity

4. Preliminary Results
Figure 4 shows the estimation of the permeability field
which shows reasonable characterization of subsurface frac-
ture features because of the informative training data for
the deep generative model construction. Figure 5 shows the
fitting results of pressure and temperature data. Gaussian
noise with standard deviations of 1% of the mean was added
to the observed pressure and temperature data, respectively.
The fitting errors are also shown as the root mean square
error (RMSE):

RMSE =

√√√√ 1

Nk

Nk∑
i=1

(kest
i − ktrue

i )2 (8)

where kest
i indicates the estimated parameter value and

ktrue
i is the true value, Nk is the total number of parameters.

The RMSE of pressure data fitting is 0.351 while the RMSE
of temperature data fitting is 4.266, about the same level as
the error added. We estimated permeability and porosity
together and the accuracy of the porosity estimate is similar
to the permeability estimation.

5. Conclusion
We implemented a deep generative model-based inversion
approach to perform joint data inversions and presented
reasonable inversion results with affordable forward model
runs. The proposed method transforms an inverse problem
with the computational cost associated with the number of
observations into an approximately same problem with a
constant number (∼total O(100)) of simulations so that one
would expect a great computational gain in solving high-
dimensional inverse problems. In the examples presented,
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Figure 4. Estimation result; the true permeability field is shown on
the left and the estimated field is shown on the right.

Figure 5. Pressure and temperature data fitting. Fitting errors are
shown in RMSE. The measurement locations are indicated by the
red circles in Figure 2 with an interval of 200 m.

the estimated fields captured important permeability fea-
tures, i.e., fractures, due to the informative prior used in the
training. It is also observed that the estimate with improved
accuracy was obtained at a much smaller computational cost
than traditional methods, allowing for the characterization
of a 2D deep reservoir in less than 10 minutes on a worksta-
tion equipped with 48 CPU cores. Joint data inversion from
pressure and heat tracer with the pre-trained deep generative
model can be beneficial to identify connectivity features in
the site without considerably increasing the computational
costs.

6. Broader Impact
Understanding the distribution of subsurface properties such
as permeability and porosity is important for CO2 storage
management. Our work aims to develop an efficient and
fast inverse modeling framework to estimate key parameters
of subsurface storage sites, then better predict flow and
transport processes. Well placement and CO2 injection
planning will benefit from characterization of subsurface
properties and predictions.
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