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Abstract
The global integration of solar power into the elec-
trical grid could have a crucial impact on climate
change mitigation, yet poses a challenge due to
solar irradiance variability. We present a deep
learning architecture which uses spatio-temporal
context from satellite data for highly accurate day-
ahead time-series forecasting, in particular Global
Horizontal Irradiance (GHI). We provide a multi-
quantile variant which outputs a prediction inter-
val for each time-step, serving as a measure of
forecasting uncertainty. In addition, we suggest
a testing scheme that separates easy and difficult
scenarios, which appears useful to evaluate model
performance in varying cloud conditions. Our
approach exhibits robust performance in solar ir-
radiance forecasting, including zero-shot gener-
alization tests at unobserved solar stations, and
holds great promise in promoting the effective use
of solar power and the resulting reduction of CO2

emissions.

1. Introduction
Solar power is a vital renewable energy source with the
potential to mitigate climate change effects by reducing
greenhouse gas emissions (Doblas-Reyes et al., 2021; IEA,
2021). However, the variable nature of solar irradiance –
the amount of solar radiation reaching the Earth’s surface
– poses a challenge for seamless integration of solar power
into the electricity grid. Accurate solar irradiance forecast-
ing can help grid operators manage this variability, leading
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to more efficient and reliable grid integration of solar power,
and reducing the need for costly, environmentally damaging
backup power sources.

Solar irradiance is influenced by multiple factors, including
time of day, season, weather patterns, and the sun’s posi-
tion. Clouds cause the most variability as they block and
scatter solar radiation. Therefore, accurate solar irradiance
forecasting requires effective modeling of cloud cover.

Although prior research has leveraged time-series ap-
proaches to forecast solar irradiance (Yang et al., 2022),
few have incorporated cloud cover (Nielsen et al., 2021;
Bone et al., 2018; Si et al., 2021), particularly for the chal-
lenging task of day-ahead forecasting. When forecasting
solar irradiance for a specific station, relying solely on local
physical variables is insufficient due to the spatial variability
of cloud cover. To accurately anticipate cloud impact on in-
coming solar radiation, it’s important to consider the motion
and trajectory of clouds within a larger spatial context.

We address these gaps by incorporating satellite imaging
for solar irradiance forecasting and propose a multi-modal
architecture capable of forecasting in principle any physical
variable. We also highlight the limitations of conventional
testing schemes which use metrics like MAE or RMSE on
the entire dataset, as they fail to capture model performance
in critical cloud-related scenarios. In order to alleviate this
problem, we propose a new testing scheme based on mul-
tiple splits of the test data, separating particularly difficult
examples from easy ones. Our primary contributions are:

• We develop CrossViViT, a deep learning architecture
that uses spatio-temporal context (including satellite
data) for highly accurate day-ahead time-series fore-
casting at any station, even those unseen during train-
ing, with a particular focus on GHI.

• We present a Multi-Quantile version of CrossViViT,
which provides uncertainty estimation for each predic-
tion, applicable to any forecasting task.

• We propose a testing scheme separating difficult and
easy examples, allowing for a more nuanced evaluation
of model performance.
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2. Methodology
We propose a framework for predicting solar irradiance by
integrating spatio-temporal context and historical data from
various stations. This framework is influenced by recent
video transformer models (Arnab et al., 2021; Feichtenhofer
et al., 2022) and multi-modal models that use diverse data
sources such as images and time series (Liu et al., 2023).
Our architecture, CrossViViT, is detailed in the following
part, including its main features and design principles.

2.1. Cross Video Vision Transformer for time-series
forecasting (CrossViViT)

The overall methodology, depicted in Figure 1, can be sum-
marized as follows:

1. Tokenizing: The video context V ∈ RT×Cctx×H×W ,
with T frames for each of the Cctx channels, and H and
W respectively the height and width of the video im-
ages, is divided into Np non-overlapping patches and
linearly projected into a sequence of d-dimensional
context tokens zctx ∈ RT×Np×d. We use the Uniform
frame sampling ViViT scheme (Arnab et al., 2021) to
embed the videos, the frames being concatenated along
the batch dimension. The time series t ∈ RT×Cts are
linearly projected into a sequence of d-dimensional
time-series tokens zts ∈ RT×d. We augment the con-
text tokens with ROPE (Su et al., 2021) , and a learnt
positional encoding for the time-series tokens.

2. Masking: As a regularizing mechanism, we allow the
model to mask a portion of the video context. During
the training phase, a masking ratio mctx is randomly
sampled from a uniform distribution U(0, 0.99), and
the corresponding patches are masked accordingly. We
note that during inference, no masking is applied.

3. Encoding: We encode the time series and the past
video context separately with two transformer archi-
tectures: a L-layer ViT for the video context, and a
L-layer Transformer for the input time series.

4. Mixing: We combine the resulting context and time-
series latents, respectively zctxL and ztsL , within L layers
of a Transformer with Cross Attention (CA) (Vaswani
et al., 2017). After adding ROPE, the two L-th layers
are mixed with CA and passed through an MLP block.
The output of each layer becomes a latent which is
in turn mixed with the context latent zctxL and again
passed through a block of MLP. Formally, the follow-
ing operations are performed respectively at the first
layer ((1) and (2)) and on the remaining layers ((3) and

(4)) of the CA:

ymix
1 = CA(LN(zctxL , ztsL )) + ztsL (1)

zmix
2 = MLP(LN(ymix

1 )) + ymix
1 (2)

ymix
l = CA(LN(zctxL , zmix

l )) + zmix
l (3)

zmix
l+1 = MLP(LN(ymix

l )) + ymix
l (4)

5. Decoding: The sequence of mixed tokens zmix
L re-

turned by the layers of Cross Transformer is then
passed through N layers of another Transformer as
a decoder, before adding a learnt positional embedding
to the token sequence. The output decoded sequence
zN is passed through a final MLP head to output the
final predicted future time series tpred ∈ RT×Cts .

2.2. Multi-Quantiles: Extracting prediction intervals

We’ve adapted the CrossViViT architecture to predict in-
tervals by replacing the original MLP head with multiple
parallel MLPs, each predicting a specific quantile of the
distribution per time step. We use distinct quantile loss
functions for each MLP head, and their sum gives us the
Multi-Quantile loss, which is the model’s training objective.
The quantile loss (Koenker & Hallock, 2001) Lα(y, ŷ) for
the α quantile is defined as:

Lα(y, ŷ) = max{α(ŷ − y), (1− α)(y − ŷ)} (5)

The Multi-Quantile loss is then defined as: MQL(y, ŷ) =∑
α∈vα

Lα(y, ŷ). The selection of quantile heads vα is a
crucial hyperparameter that determines the density of the
output distribution generated by the model. To achieve a
96% prediction interval while maintaining a sufficiently
dense distribution, we set the list of quantiles as vα =
[0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.9, 0.98].

3. Dataset
This section provides a description of the dataset designed
for this study and shared publicly, including all the applied
pre-processing steps.

Time series This study uses 15 years (2008-2022) of radia-
tion data from six locations, collected at 30-minute intervals
from the Baseline Surface Radiation Network (BSRN). The
data captures diverse irradiance patterns and includes mea-
surements of pressure, clear sky components, Direct Normal
Irradiance (DNI), and Diffuse Horizontal Irradiance (DHI).
Global Horizontal Irradiance (GHI) is calculated using DNI,
DHI, and the sun’s zenith angle, using the pvlib python
library (Holmgren et al., 2020). The Ineichen model (Ine-
ichen, 2016) from pvlib provides clear sky components.

Satellite images We use the EUMETSAT Rapid Scan Ser-
vice dataset (Rothfuss, 2015), spanning 2008-2022, focus-
ing on the 11 non-High Resolution Visible channels. These
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Figure 1. CrossViViT architecture, in its Multi-Quantile version.

channels, with a spatial resolution of 6-9km, cover the up-
per third of Earth, especially Europe, and include informa-
tion from Infrared and Water vapor channels. The original
data was reprojected onto the World Geodetic System 1984
(WGS 84) coordinate system (Rothfuss, 2015). We addi-
tionally compute the optical flow for each channel using the
TVL1 algorithm (Sánchez Pérez et al., 2013), representing
the cloud motion and add an elevation map as an additional
feature. We downscale the pre-processed satellite data from
a resolution of 5122 to 642 for computational efficiency.

4. Experiments and Results
We compare our architecture with baselines and discuss the
experiment setup, results, and comparisons under different
test configurations. Our split methodology evaluates the
model in difficult prediction situations, important for down-
stream tasks related to solar irradiance estimation. The mod-
els use a 9-year dataset (2008-2016) from IZA, CNR, and
PAL stations for training, a separate 3-year dataset (2017-
2019) from the PAY station for validation, and another 3-
year dataset (2020-2022) from TAM and CAB stations for
testing. The models employ a sliding window approach,
using 24-hour historical input to predict the next 24-hour
Global Horizontal Irradiance (GHI).

4.1. Baselines

We conduct a comprehensive comparison between our ap-
proach and several state-of-the-art deep learning architec-

tures and propose tailored baselines for solar irradiance
forecasting. These baselines include the Persistence model,
which relies on the previous day’s data for predictions, and
the Clear Sky baseline, which utilizes computable clear
sky components (Ineichen, 2016). Additionally, we employ
Fourier approximations with different numbers of modes
(3, 4, and 5) and apply a low-pass filter to generate Fourier-
based baselines. Detailed information on these architectures
and baselines can be found in Table 1.

4.2. “Hard” vs. “Easy” forecasting scenarios

We evaluate the model’s ability in predicting cloud-induced
GHI fluctuations by assessing it on different time splits at
test stations. This helps identify the model’s strengths and
shortcomings compared to prior methods, giving insights
into specific scenarios where CrossViViT excels or falls
short. Given the Persistence baseline’s effectiveness when
GHI values are similar over consecutive days, we propose
a time split approach based on GHI variation, categorizing
examples as ”Easy” or ”Hard.” ”Easy” cases have mini-
mal GHI changes over days, making Persistence effective,
whereas ”Hard” cases have significant GHI changes that
challenge Persistence. We use a measure based on the area
ratio under the GHI curve for two days to quantify similar-
ity. This measure, denoted as r =

∣∣∣log y
yprev

∣∣∣, assigns equal
importance to ratios such as 0.5 and 2. By using a threshold
of

∣∣log ( 2
3

)∣∣, we classify cases as ”Easy” when r is below
the threshold and as ”Hard” otherwise.
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Models Parameters CAB (2020-2022) TAM (2017-2019)

All (9703) Easy (5814) Hard (3889) All (2299) Easy (2064) Hard (235)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Persistence N/A 63.57 131.44 52.56 109.05 80.04 159.14 32.26 94.71 20.8 59.47 132.92 238.12
Fourier3 N/A 68.91 121.23 56.51 93.854 87.46 153.29 56.0 94.85 45.48 62.62 148.42 231.47
Fourier4 N/A 65.74 123.15 53.82 96.38 83.56 154.76 44.02 92.22 33.15 57.56 139.56 232.61
Fourier5 N/A 64.67 124.22 52.67 97.94 82.61 155.44 40.26 91.36 28.94 55.57 139.68 233.52
Clear Sky (Ineichen, 2016) N/A 67.19 140.11 60.55 125.66 77.12 159.28 40.61 98.02 31.07 63.4 124.42 242.26

ReFormer (Kitaev et al., 2020) 8.6M 57.42 102.73 53.75 92.97 62.92 115.81 81.6 137.04 78.57 129.72 108.22 189.55
Informer (Zhou et al., 2021) 56.7M 72.26 122.89 70.85 118.85 74.35 128.69 83.43 140.38 82.6 138.46 90.66 156.22
FiLM (Zhou et al., 2022b) 9.4M 68.37 116.86 59.66 95.35 81.4 143.11 62.72 99.71 54.99 77.63 130.66 210.58
PatchTST (Nie et al., 2023) 9.6M 60.76 119.41 54.77 107.71 69.7 135.01 66.94 132.44 62.4 124.25 106.77 189.72
LighTS (Zhang et al., 2022) 32K 54.91 102.88 49.55 89.28 62.92 120.38 68.51 114.59 64.61 104.98 102.77 177.98
CrossFormer (Zhang & Yan, 2023) 227M 55.98 101.84 51.59 90.2 62.55 117.11 68.85 116.45 65.4 107.88 99.16 175.08
FEDFormer (Zhou et al., 2022a) 23.6M 56.38 99.27 53.08 90.13 61.31 111.54 92.12 146.52 91.13 142.83 100.82 175.64
DLinear (Zeng et al., 2022) 4.7K 75.01 121.01 65.21 99.72 89.65 147.21 75.54 115.40 69.04 98.74 132.67 211.28
AutoFormer (Wu et al., 2021) 50.4M 64.34 104.53 60.81 95.14 69.63 117.17 115.88 170.91 117.36 171.07 102.87 169.47

CrossViViT 145M 50.35 99.18 47.04 89.6 55.30 112.00 49.46 94.96 44.01 79.91 97.40 179.30

MAE pt MAE pt MAE pt MAE pt MAE pt MAE pt

Multi-Quantile CrossViViT 78.8M 61.80 0.91 57.03 0.93 68.94 0.90 81.20 0.71 78.93 0.70 101.18 0.75

Table 1. Comparison of model performances across test stations TAM and CAB, during test years (2020-2022) for CAB, and val years
(2017-2019) for TAM. We report the MAE and RMSE for the easy and difficult splits presented in section 4.2 along with the number
of data points for each split. We add the MAE resulting from the Multi-Quantile CrossViViT median prediction, along with pt, the
probability for the ground-truth to be included within the interval, averaged across time steps.

4.3. Performance on stations and years outside the
training distribution

Table 1 provides a detailed comparison between CrossViViT,
state-of-the-art timeseries models, and dummy baselines.
The evaluation focuses on the test stations TAM and CAB,
spanning the periods 2017-2019 and 2020-2022, respec-
tively. We note however that since the 2020-2022 period is
unavailable for TAM, we use 2017-2019 instead.

CrossViViT achieves the lowest MAE among the time-series
models on the TAM station during the 2017-2019 period.
However, the persistence baseline still outperforms our ap-
proach. This discrepancy can be attributed to the characteris-
tics of the TAM station, located in a desert region known for
clear and sunny days. The inclusion of cloud information
in our model may occasionally lead to underestimation of
GHI in such clear-sky conditions. Additionally, the training
dataset primarily consists of data from a single ”sunny” sta-
tion (IZA), limiting exposure to clear-sky patterns. These
findings suggest that for stations with low irradiance inter-
mittency, a combination of persistence and clear-sky models
may suffice. On the CAB station during the 2020-2022
period, CrossViViT surpasses all baselines across various
time splits. This improvement can be attributed to the spe-
cific meteorological conditions of the CAB station, which
experiences a higher frequency of cloudy days. It confirms
CrossViViT’s abilities under cloudier conditions.

Regarding Multi-Quantile CrossViViT, we include the MAE
of the median prediction, along with the test confidence pt

obtained for the prediction interval: the probability for the
ground-truth to be included within the interval, for each time
step, averaged across the entire dataset. Note that the goal
is not to provide the best prediction from the median but
rather to provide confident prediction intervals, with a high
pt. The prediction intervals achieved a high level of confi-
dence, surpassing 0.9, for the unseen CAB station. However,
for the TAM station, the harsh environmental conditions of
the desert posed a challenge for reliable estimation of pre-
diction intervals. Although the median prediction results
were comparatively inferior to those of a baseline method,
it demonstrates consistent patterns in its variation across
easy and difficult cases. Furthermore, the test confidence
of the proposed method remains relatively constant across
different splits, for both stations.

5. Conclusion, Limitations, and Future Work
We propose CrossViViT, an accurate day-ahead solar irradi-
ance forecasting architecture that leverages spatio-temporal
context through satellite data and enables prediction distri-
bution extraction for each time step. Our testing scheme
captures crucial scenarios, including varying cloud condi-
tions, demonstrating the robustness of CrossViViT in solar
irradiance forecasting which could contribute to the effective
integration of solar power into the grid, even in zero-shot
tests at unobserved stations and years. However, additional
data would enhance the validation of our approach, and
exploring different prediction and context horizons would
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improve the model’s robustness. Investigating a cropping
methodology as a regularization technique for the context is
also worth considering. Based on these promising results,
we intend to investigate the applicability of CrossViViT to
other context-dependent physical variables.

Broader impact
This research holds profound potential to positively influ-
ence society by promoting the effective integration of solar
power into our electrical grid, a significant stride towards
carbon neutrality and climate change mitigation. Accurate
solar irradiance forecasts will enable more efficient grid
management and reduced reliance on fossil-fuel reserves.
Ethically, it is crucial that this research and its resulting
technologies be accessible to all, not widening the gap be-
tween developed and developing nations in the transition to
renewable energy giving the fact that our region of interest
includes north Africa. Ensuring fair access to the benefits
of this research will contribute to sustainable development
goals and a more equitable energy future.
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A. Appendix.
A.1. Related works

Machine Learning for time-series forecasting Deep learning approaches have gained popularity for time-series forecasting
in recent years due to their ability to model complex nonlinear relationships and capture temporal dependencies. These
approaches have demonstrated superior performance compared to traditional statistical methods, motivating further research
in this area. In a recent survey (Wen et al., 2022), it was found that transformers, renowned for their success in natural
language processing and computer vision, were also effective for time-series analysis. The authors discussed the strengths
and limitations of transformers and compared the structure and performance of recent transformer-based architectures on a
benchmark weather dataset (Zhou et al., 2021). The particular case of solar irradiance forecasting represents an interesting
application for time-series models (Wang et al., 2019; Narvaez et al., 2021; Alzahrani et al., 2017). One recent study
developed a multi-step attention-based model for solar irradiance forecasting that generates deterministic predictions and
quantile predictions as well (Sharda et al., 2021). In a similar perspective, Jønler et al. (2023) developed a probabilistic solar
irradiance transformer that incorporates gated recurrent units and temporal convolution networks, demonstrating strong
performance for short-term horizons.

Context mixing / Multimodal learning for time-series forecasting Previous studies highlight the potential of time-series
methods for solar irradiance forecasting, emphasizing the significance of short-term horizons in solar energy management.
However, day-ahead forecasting remains challenging due to the influence of cloud cover on surface irradiance (Bone et al.,
2018; Si et al., 2021), a problem which we aim to address in this paper. Thus, it is crucial to account for cloud effects in
solar irradiance forecasting regardless of the chosen method. For instance, Zhang et al. (2023) investigated the impact of
cloud movement on irradiance prediction and proposed an approach to automatically learn the relationship between sky
image appearance and solar irradiance. A concurrent work (Liu et al., 2023) proposed a multimodal-learning framework for
ultra-short-term (10min-ahead) solar irradiance forecasting. They used Informer (Zhou et al., 2021) to encode historical
time-series data, then utilized Vision Transformer (Dosovitskiy et al., 2020) to handle sky images. Finally, they employed
cross-attention to couple the two modalities. The studies discussed above highlight the potential of incorporating external
data sources, such as sky images and satellite images, in combination with time-series approaches to improve the accuracy
of solar forecasting.

Operator Learning Utilizing available satellite imagery to forecast GHI over a region presents limitations as it may not
capture clouds that exist at a resolution beyond that of the satellite data. To ensure accurate forecasting of quantities of
interest, the ability to query the model at any possible resolution and any point within the domain becomes crucial. Recent
advancements have witnessed the rise of algorithms focusing on learning operators capable of mapping across functional
spaces, with a focus on solving partial differential equations (PDE) (Lu et al., 2019; Li et al., 2021; Kovachki et al., 2021;
Li et al., 2020). These operators can effectively map initial conditions to PDE solutions, making it possible to query the
learned solution theoretically anywhere within its domain. Fourier Layers, developed by Li et al. (2021), enable zero-shot
prediction on both uniform and non-uniform grids with learnable deformations (Li et al., 2022). Pathak et al. (2022) replace
attention in ViT (Dosovitskiy et al., 2020) with Fourier layer mixing for competitive weather forecasting results with faster
inference. MeshFreeflowNet (Jiang et al., 2020) learns high-resolution frames from corresponding lower resolution ones by
querying the model at any point of the domain for irregular grids. Similarly, Boussif et al. (2022) employ message passing
with a low-resolution graph for zero-shot super-resolution PDE learning. Additionally, message passing neural PDE solvers
(Brandstetter et al., 2022) exhibit spatio-temporal multi-scale capabilities benefiting from long-expressive memory (Equer
et al., 2023; Rusch et al., 2022). We note that while these approaches were developed for PDEs in mind, they can still be
used for weather-related applications.

A.2. Additional visualisations

Figure 2 shows the location and characteristics of the 6 stations utilized within the study. Predictions visualisations can be
seen in Figure 3, along with the comparison of the fourier spectra of our prediction, the ground truth and a strong baseline,
CrossFormer.
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Station Latitude Longitude Elevation

Cabauw (CAB) (Knap, 2007) 51◦58′N 4◦55′E 0m
Cener (CNR) (Olano, 2022) 42◦48′N 1◦36′W 471m
Izana (IZA) (Cuevas-Agulló, 2014) 28◦18′N 16◦29′W 2373m
Palaiseau (PAL) (Haeffelin, 2014) 48◦42′N 2◦12′E 156m
Payerne (PAY) (Vuilleumier, 2018) 46◦48′N 6◦56′E 491m
Tamanrasset (TAM) (Baika, 2023) 22◦47′N 5◦31′E 1385m

Left: Location of the six meteorological stations considered in
the study along with three of the eleven spectral channels consid-
ered. The IR 108, VIS 008 and WV 073 channels are infrared
(10.8µ), visible (0.8µm) and water vapor (7.3µm) channels re-
spectively. Right: Table summarizing the geographic coordinates
and elevation of each station used in the paper.

Figure 2. Stations and satellite data.

(a) (b)

(c) (d)

Figure 3. Prediction visualisations from CrossViViT for four examples in CAB station, on the 2020-2022 test period. (a) CrossViViT
predictions. (b) Multi-Quantile CrossViViT median (q0.50 quantile) predictions with [q0.02,q0.98] prediction interval. (c) Predictions from
a strong baseline, CrossFormer, (d) Fourier spectrum of the target, our prediction, and CrossFormer prediction. Figure (a) illustrates that
CrossViViT closely aligns with the ground truth by effectively capturing cloud variations, whereas CrossFormer assumes a clear-sky
pattern. This is confirmed by the Fourier spectra depicted in (d), where CrossFormer’s spectrum exhibits a rapid decay in contrast to
CrossViViT.


