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Abstract
Singularly Perturbed Partial Differential Equa-
tions are challenging to solve with conventional
numerical techniques such as Finite Element
Methods due to the presence of boundary and
interior layers. Often the standard numerical solu-
tion has spurious oscillations in the vicinity of
these layers. Stabilization techniques are em-
ployed to eliminate these spurious oscillations
in the numerical solution. The accuracy of the
stabilization technique depends on a user-chosen
stabilization parameter, where an optimal value
is challenging to find. In this work, we focus on
predicting an optimal value of the stabilization
parameter for a stabilization technique called the
Streamline Upwind Petrov Galerkin technique for
solving singularly perturbed partial differential
equations. This paper proposes SPDE-ConvNet,
a convolutional neural network for predicting sta-
bilization parameters by minimizing a loss based
on the cross-wind derivative term. The proposed
technique is compared with the state-of-the-art
variational form-based neural network schemes.

1. Introduction
1.1. Singularly Perturbed Partial Differential Equations

We use Singularly Perturbed Partial Differential Equa-
tions (SPPDEs) to model many scientific phenomena (To-
biska & Verfurth, 1996) such as chromatography, fluid flow
and continuity of electrons in semiconductors. The sig-
nificant characteristic of these equations is the diffusion
parameter ϵ > 0 multiplied by the second-order derivative
term. Solving these equations with finite element or finite
volume method is challenging as it will possess boundary
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and interior layers, and often we get spurious oscillations
in the numerical solution. Thus stabilization techniques
are proposed to eliminate these spurious oscillations in the
numerical solution (Yadav & Ganesan, 2021), (Yadav &
Ganesan, 2019), (Yadav & Ganesan, 2022). The accuracy
of these stabilization techniques depends on a user-chosen
stabilization parameter (τ ). Finding τ is challenging since
any generalized expression for τ doesn’t exist (Yadav, 2023).
This work attempts to solve SPPDEs with the neural net-
work by leveraging its function approximation capabilities
by predicting τ .

Recently, deep learning has made its way into scientific
computing (Ee & Yu, 2017). Its universal approximation
capabilities (Cybenkot, 2006), (Yadav et al., 2016) are uti-
lized for designing alternate methods of solving partial dif-
ferential equations (PDE). Unlike image classification or
segmentation, PDE solving is an unsupervised task as we
do not have access to the analytical solution of the given
PDE at the training time. Thus implicit information from
the equation itself is used to solve the equation. One such
method is Physics Informed Neural Networks (PINN) which
minimizes the residual of the equation (Raissi et al., 2017).
PINNs show limited accuracy for solving SPPDEs; thus, we
attempt to aid conventional FEM with deep learning-based
τ prediction.

1.2. Outline

The paper is organized as follows: In section 1, we intro-
duce a SPPDE and the challenges associated with solving
them. In section 2, a brief description of a few contemporary
deep learning-based techniques for solving PDEs is given,
followed by stabilization techniques such as SUPG. Section
3 provides the mathematical preliminaries required to un-
derstand the proposed technique. In section 4, we provide
details of the proposed method with network architecture
and the loss function. We discuss two major neural network-
based PDE solvers in the following section. Finally, the
work is concluded in section 5.
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2. Literature Review
SPPDEs are a particular class of PDEs; therefore, any tech-
nique developed for general PDEs can be modified for SP-
PDEs. Keeping this in mind, we shall first discuss the avail-
able deep learning solvers for PDEs and how we can modify
these solvers for SPPDEs. Much research has been done on
solving PDEs with deep learning in recent years (Beguinet
et al., 2022). Deep learning can be used in two ways, either
as a direct PDE solver or as a helper for conventional PDE
solving techniques such as FEM, FDM, and FV. While using
DL as a PDE solver, the given problem is modelled as an
optimization problem since the labelled data is unavailable
for supervised training.

2.1. Physics-Informed Neural Network (PINN)

PINN is a standard neural network-based PDE solving tech-
nique. In this subsection, we elaborate on the methodology
of PINN (Raissi et al., 2017). Unlike neural network-based
supervised learning, where we have access to the ground
truth, PINN uses a data-driven approach that considers the
physical laws of the data for computing loss function for
training the neural network. The PINN approximate the nu-
merical solution by minimizing the residual of the equation
constrained with boundary conditions. For example, let us
say we are given the following PDE defined on a bounded
domain Ω ∈ Rd for d = 1, 2 with boundary conditions as
given below:

D(u(x)) = 0 x ∈ Ω

B(u(x)) = 0 x ∈ ∂Ω
(1)

where u is the unknown solution, ∂Ω is the domain bound-
ary, D denotes a linear or nonlinear differential operator,
and the operator B denotes the boundary condition of the
given PDE(e.g., Dirichlet, Neumann and Robin boundary
condition). In PINN, an approximate solution û to equation
(1) is estimated by a feed-forward network M as follows:

û : = M(x; θ)

Loss(θ) = MSEu +MSEf ,

MSEu =
1

Nu

Nu∑
i=1

|ûi − u(xi
u)|2,

MSEf =
1

Nf

Nf∑
i=1

|f(xi
f )|2

(2)

where xi
u, x

i
f are the spatially collocated points in Ω and

∂Ω respectively, Nf , Nu is the number of boundary and
interior points, respectively. Loss(2) is minimized to ob-
tain an optimal θ. PINN was the foremost neural network
architecture proposed for solving PDEs, but its accuracy
was limited; hence, many advancements have been made

after PINN. One such advancement is Variational Neural
Networks(VarNet)(Khodayi-mehr & Zavlanos, 2020) for
the solution of PDEs which will be explained in the next
section.

2.2. Variational Neural Networks for the Solution of
Partial Differential Equations (VarNet)

VarNet (Khodayi-mehr & Zavlanos, 2020) is a neural
network-based PDE solver. Its novel loss function depends
on PDE’s variational (integral) form rather than its differ-
ential form used in PINN. This loss function effectively
approximates the solution as it uses lower-order derivatives.
The performance of both PINNs and VarNet is limited for
SPPDEs, so we attempt to add the classical stabilization
technique in the loss function of the neural-network-based
PDE solvers to enhance its accuracy for solving SPPDEs.
We present the SUPG stabilization technique in the next
section.

2.3. Stabilization technique: Streamline Upwind Petrov
Galerkin

Many stabilization techniques exist in the literature;
one widely used technique is the streamline upwind
Petrov–Galerkin(SUPG) technique (Brooks & Hughes,
1982; Hughes et al., 1989). It stabilizes the given weak
form of the PDE by adding the extra diffusion in the upwind
direction. In SUPG, the amount of stabilization is controlled
by the value of a user-chosen stabilization parameter (τ ). A
significant value of τ can smear the oscillations, whereas a
small value will not remove the oscillation adequately. Thus
finding an optimal value of τ is essential for good perfor-
mance with the SUPG technique. In this paper, we propose
to predict the value of τ with a convolutional neural network
by minimizing an error functional proposed in (John et al.,
2011). It will enhance its accuracy for SPPDEs.

2.4. Contributions

The major contributions are:

• A convolutional neural network is proposed for pre-
dicting stabilization parameters for SUPG for two-
dimensional SPPDEs.

• We effectively use an error functional proposed
in (John et al., 2011) based on the cross-wind deriva-
tive term as the loss function for the proposed SPDE-
ConvNet.

• The proposed technique is compared with the following
contemporary ideas:

– VarNet (Kharazmi et al., 2019)
– SUPG Stabilized Finite Element Method (N. &

R., 1982)
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3. Mathematical Preliminaries
3.1. Singularly Perturbed Partial Differential

Equation (SPPDE)

SPPDEs are a class of differential equations with a small
diffusion parameter (ϵ > 0) multiplied with the second order
differential term. A small value of ϵ often induces spurious
oscillations in the standard Galerkin solution. For a given
bounded domain Ω ⊂ Rd, where d ∈ N, an SPPDE is given
as follows:

−ϵ∆u+ b.∇u = f(x), x ∈ Ω ⊂ Rd,

u = g, on∂Ω
(3)

ϵ > 0 is the diffusion coefficient and is called perturbation
parameter, b = [b1, b2]

T is the convective velocity, f ∈
L2(Ω) is the external source term, u is the unknown scalar
term, g is the Dirichlet boundary value. For smooth b and
f(x), equation (3) has a unique solution. We will consider
the convection-dominated problems where ϵ << |b|.

3.2. Weak Formulation

In this work, we use FEM, and the first step in FEM is to
derive the weak form for the given equation. The weak
form equation of (3) is derived by multiplying it by a func-
tion v ∈ V := H1

0 (Ω), followed by integrating on Ω and
subsequently applying integration by parts. Now, we find
u ∈ H1(Ω) such that for all v ∈ V

a(u, v) = (f, v) (4)

where, the bilinear form a(·, ·) : H1(Ω)×H1
0 (Ω) → R and

the linear form f(v) : H1
0 (Ω) → R are defined as:

a(u, v) =

∫
Ω

ϵ∇u · ∇v dx+

∫
Ω

b · ∇uv dx (5)

f(v) =

∫
Ω

fv dx (6)

Let Ωh be an admissible decomposition of Ω and let K
represent a single cell in Ωh. The weak formulation for this
discretized domain requires choosing a finite-dimensional
space Vh ⊂ H1

0 (Ω) comprising continuous piece-wise poly-
nomials and finding uh ∈ H1(Ω) such that for all vh ∈ Vh

we have

ah(uh, vh) = (f, vh),

ah (uh, vh) := ε (∇uh,∇vh) + (b · ∇uh, vh) = (f, vh)

(7)

3.3. Stabilized weak formulation of the SPPDE using
SUPG

In SUPG, we add a residual term to the weak form in the
direction of streamline. Let R(u) be the residual of the

equation (3) defined as:

R(u) = −ϵ∆u+ b · ∇u− f (8)

The term R(u) is added to the discretized weak formulation
given in equation (7). Now, the modified discrete weak form
is to find uh ∈ Vh such that:

a (uh, vh) + (Rh (uh) , τb · ∇vh) = (f, vh) ,

a(uh, vh) = ϵ(∇uh,∇vh) + (b · ∇uh, vh)

+
∑

K∈Ωh

τK(−ϵ∆uh + b · ∇uh − fh,b · ∇vh)Ωh

(9)

τK is a non-negative stabilization parameter. Its value plays
an essential role in the quality of the approximated solution;
hence, it is the focus of this work. A very large value can
show unexpected smearing, whereas a very small value will
not remove the spurious oscillations. We aim to predict τ
with a convolutional neural network.

3.4. Standard stabilization parameter

In literature, a few expressions exist for stabilization param-
eter (τ ) given as follows:

PeK =
bh

2ϵ
,

τstd|K =
hK

2|b|
(coth (PeK)− 1

PeK
)

(10)

where hK is the diameter of the cell K, PeK is the local
Peclet number. The numerical accuracy of τstd is inadequate
for all the SPPDEs, and this expression is not extendable to
higher dimensional problems. Thus we attempt to develop
a generalizable τ prediction technique using convolutional
neural networks wherein we aim to get a lower numerical
error in the solution than what is provided by standard τ .

4. Proposed Method: SPDE-ConvNet
We propose SPDE-ConvNet, a convolutional neural network
for predicting the value of τ . The loss of the neural network
is inspired by the error indicators proposed in (John et al.,
2011). It consists of SUPG stabilized weak form(equation
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Figure 1. Network Architecture of SPDE-ConvNet

(9)) of the equation.

τK(θ) = SPDE-ConvNet(ϵK , bK1 , bK2 , hK , ||∇uK
h ||)

whereK ∈ Ωh

Loss(τ(θ)) = [−ϵ∆uh + b · ∇uh − f ]
2
+ q(b⊥ · ∇uh)

where, q(s) =

{√
s s > 1

2.5s2 − 1.5s3 otherwise

and, b⊥(x) =


[b2(x),−b1(x)]

|b(x)|
if |b(x)| ≠ 0

0 else |b(x)| = 0

θ∗ = argmin
θ

(Loss(τ(θ)))

(11)

uh is the numerical solution of equation (9) with predicted
τK , the function q(s) represents the cross-wind derivative
term. SPDE-ConvNet consists of three one-dimensional
convolutional layers of size [64, 32, 32]. Each layer consists
of a convolutional filter which strides by 1. The input to
the network consists of diffusion coefficient (ϵ), convective
velocity in x and y direction (b1, b2), mesh size (h) and
the norm of the gradient of the Galerkin solution. It is
implemented from scratch using PyTorch (Paszke et al.,
2019) and FEniCS(A. Logg, 2012), (Logg & Wells, 2010).
The network is shown schematically in figure 1.

4.1. Example :

For testing the accuracy of SPDE-ConvNet, we consider the
convection-diffusion equation (3) with following equation
coefficients and boundary conditions. This example is taken
from (Knobloch, 2009):

ϵ = 10−8, b = (2, 3)T , Ω = (0, 1)2,

u = 0 on ∂Ω
(12)

Source term f is calculated by substituting the following
analytical solution(uexact) in equation (12).

uexact(x, y) = xy2 − x exp

(
3(y − 1)

ϵ

)
− y2 exp

(
2(x− 1)

ϵ

)
+ exp

(
2(x− 1) + 3(y − 1)

ϵ

)
(13)

It contains two boundary layers near x = 1.0 and y = 1.0
as shown in figure 2(a) and hence makes a suitable test
case for checking the performance of the SPDE-ConvNet as
mentioned in (Knobloch, 2009). The τ(x) predicted from
SPDE-ConvNet is shown in figure 2.

4.2. Performance

We compare the error metrics given by SPDE-ConvNet,
VarNet and standard τstd. The results are shown in table 1.
All the error metrics for SPDE-ConvNet is less than VarNet

Table 1. Comparison of SPDE-ConvNet with other techniques

L2 Error Relative l2 error H1 error l∞ error

Standard τ 6.77e-6 1.36e-1 6.74e-4 7.29e-5
VarNet 2.37e-4 1.62e+0 1.87e-3 3.55e-4
SPDE-ConvNet 3.04e-6 8.36e-2 3.20e-4 4.03e-5

and standard τstd. It shows it performs better than the other
two techniques.

5. Summary
We proposed SPDE-ConvNet, a convolutional neural net-
work for predicting stabilization parameters for solving two-
dimensional SPPDEs with the SUPG technique. The pro-
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Figure 2. (a) Exact Solution, (b) Solution with standard τ , (c) Solution from SPDE-ConvNet

posed technique is tested in terms of four different error
metrics. The comparison shows that the proposed CNN-
based SPDE-ConvNet technique outperforms both VarNet
and the standard τstd.

Broad impact
This research represents a significant leap forward in the
field of computational mathematics and scientific comput-
ing, with broad and far-reaching implications. By leverag-
ing the capabilities of CNNs, the paper addresses a criti-
cal challenge in numerical simulations posed by singular
perturbations. Accurate and timely predictions of local
stabilization parameters are essential to ensure numerical
stability and reliability in solving SPDEs. The integration
of CNNs into SPDEs also signifies a groundbreaking col-
laboration between machine learning and computational
science. This synergy opens up exciting possibilities for de-
veloping data-driven methodologies that can tackle a wide
array of intricate mathematical problems beyond SPDEs.
As a result, this research contributes to the advancement
of hybrid approaches, combining classical modeling with
cutting-edge data-driven techniques, which holds immense
promise for future developments in computational methods
in the physical sciences.

Furthermore, the paper’s emphasis on local stabilization
parameter prediction highlights a keen understanding of the
specific challenges in SPDEs. This targeted approach is
likely to inspire further investigations into the development
of tailored machine-learning solutions for other complex sys-
tems, potentially revolutionizing how researchers approach

numerical simulations and scientific modeling in general.

The application of CNNs in SPDEs also underscores the
transformative potential of artificial intelligence in advanc-
ing scientific research. Beyond its immediate impact on
SPDEs, this research serves as a blueprint for future stud-
ies that leverage neural networks to tackle complex prob-
lems across various disciplines, such as fluid dynamics,
electromagnetics, climate modeling, and more. This inter-
disciplinary approach promises to accelerate progress and
deepen our understanding of the natural world.

In summary, the paper’s pioneering use of convolutional
neural networks for local stabilization parameter prediction
in SPDEs signifies a major advancement in computational
mathematics and the physical sciences. Its transformative
impact extends to multiple scientific domains, offering en-
hanced predictive capabilities, optimized simulations, and
new insights into the behavior of intricate systems.
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imer, A., d'Alché-Buc, F., Fox, E., and Garnett, R.
(eds.), Advances in Neural Information Processing
Systems, volume 32, pp. 8026–8037. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.
pdf.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics
informed deep learning (part i): Data-driven solutions of
nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

Tobiska, L. and Verfurth, R. Analysis of a Streamline Dif-
fusion Finite Element Method for the Stokes and Navier-
Stokes Equations. SIAM Journal on Numerical Anal-
ysis, 33(1):107–127, 1996. ISSN 0036-1429. URL
https://www.jstor.org/stable/2158427.

Yadav, S. Qpde: Quantum neural network based sta-
bilization parameter prediction for numerical solvers
for partial differential equations. AppliedMath, 3(3):
552–562, 2023. ISSN 2673-9909. doi: 10.3390/
appliedmath3030029. URL https://www.mdpi.
com/2673-9909/3/3/29.

Yadav, S. and Ganesan, S. How deep learning performs with
singularly perturbed problems? In 2019 IEEE Second
International Conference on Artificial Intelligence and
Knowledge Engineering (AIKE), pp. 293–297, 2019. doi:
10.1109/AIKE.2019.00058.

Yadav, S. and Ganesan, S. Spde-net: Neural network based
prediction of stabilization parameter for supg technique.
In 13th Asian Conference on Machine Learning, number
Proceedings of Machine Learning Research, pp. 268–283.
https://proceedings.mlr.press/v157/yadav21a.html, 2021.

Yadav, S. and Ganesan, S. Ai-augmented stabilized finite
element method, 2022.

Yadav, S., Kaur, A., and Bhauryal, N. S. Resolving the
celestial classification using fine k-nn classifier. In 2016
Fourth International Conference on Parallel, Distributed
and Grid Computing (PDGC), pp. 714–719, 2016. doi:
10.1109/PDGC.2016.7913215.

http://www.sciencedirect.com/science/article/pii/0045782582900718
http://www.sciencedirect.com/science/article/pii/0045782582900718
/paper/Approximation-by-Superpositions-of-a-Sigmoidal-*-Cybenkot/05ceb32839c26c8d2cb38d5529cf7720a68c3fab
/paper/Approximation-by-Superpositions-of-a-Sigmoidal-*-Cybenkot/05ceb32839c26c8d2cb38d5529cf7720a68c3fab
/paper/Approximation-by-Superpositions-of-a-Sigmoidal-*-Cybenkot/05ceb32839c26c8d2cb38d5529cf7720a68c3fab
http://www.sciencedirect.com/science/article/pii/0045782589901114
http://www.sciencedirect.com/science/article/pii/0045782589901114
https://www.sciencedirect.com/science/article/pii/S0045782511001496
https://www.sciencedirect.com/science/article/pii/S0045782511001496
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://www.jstor.org/stable/2158427
https://www.mdpi.com/2673-9909/3/3/29
https://www.mdpi.com/2673-9909/3/3/29


Convolutional Neural network for local stabilization parameter prediction for Singularly Perturbed PDEs

.1. Error Metrics

We use the following metrics to calculate numerical errors
in the solution obtained with the τ predicted from SPDE-
ConvNet. We use them for comparison against the stan-
dard τ (equation (10)) and VarNet as explained in section
2.

L2 error: ||eh||L2(Ω) = ||û(τ̂)− uexact||L2(Ω)

Relative l2 error:
i=Nd∑
i=1

||ûτ̂ (xi)− uexact(xi)||2
||u||2

H1 error: ||e||H1(Ω) =

=
∑

α<=1

∫
Ω

Dα(û(τ̂)− uexact)D
α(û(τ̂)− uexact)dx

L∞ error: ||e||L∞(Ω) = ess sup{|û(τ̂)− uexact| : x ∈ Ω}
(14)

Here Nd is the number of degrees of freedom,Dα is the
weak derivative up to order α, τ̂ is the stabilization pa-
rameter predicted by SPDE-NetII, uexact is the analytical
solution, û(τ̂) is the SUPG solution calculated with τ̂ .


