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Abstract

Recent advances in graph neural networks
(GNNs) have allowed molecular simulations with
accuracy on par with conventional gold-standard
methods at a fraction of the computational cost.
Nonetheless, as the field has been progressing
to bigger and more complex architectures, state-
of-the-art GNNs have become largely prohibitive
for many large-scale applications. In this paper,
we, for the first time, explore the utility of knowl-
edge distillation (KD) for accelerating molecu-
lar GNNs. To this end, we devise KD strategies
that facilitate the distillation of hidden represen-
tations in directional and equivariant GNNs and
evaluate their performance on the regression task
of energy and force prediction. We validate our
protocols across different teacher-student config-
urations and demonstrate that they can boost the
predictive accuracy of student models without
altering their architecture. Using our KD proto-
cols, we manage to close as much as 60% of the
gap in predictive accuracy between models like
GemNet-OC and PaiNN with zero additional cost
at inference.

1. Introduction
In the last couple of years, the field of molecular simulations
has undergone a rapid paradigm shift with the advent of new,
powerful computational tools based on machine learning
(ML) (Noé et al., 2020; Westermayr et al., 2021). At the
forefront of this transformation have been recent advances
in graph neural networks (GNNs), which have brought about
architectures that more effectively capture geometric and
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Figure 1. Using knowledge distillation, we manage to substantially
boost the predictive accuracy of student models without altering
their architecture. This allows us to lessen the tradeoff between
speed and performance in molecular GNNs, and run more efficient
molecular simulations.

structural information critical for the accurate representation
of molecules and molecular systems (Reiser et al., 2022;
Wang et al., 2023). Consequently, a multitude of GNNs have
been developed, which now offer predictive performance on
par with conventional gold-standard methods like density
functional theory (DFT) at a fraction of the computational
cost at inference time (Batzner et al., 2022; Gasteiger et al.,
2020b; 2021; Musaelian et al., 2023). This has, in turn, sig-
nificantly accelerated the modeling of molecular properties
and the simulation of diverse molecular systems, bolstering
new research developments in many scientific disciplines,
including material sciences, drug discovery and catalysis.

Nonetheless, this progress - largely coinciding with the
development of bigger and more complex models, has natu-
rally come at the expense of increased complexity (Sriram
et al., 2022; Zitnick et al., 2022). This has gradually limited
the utility of state-of-the-art GNNs for large-scale molecular
simulation applications, where inference throughput (i.e.,
how many samples can be processed for a given time) is
critical for making fast continual predictions about the evo-
lution of a system. Hence, addressing the trade-off between
accuracy and computational demand remains essential for
creating more affordable tools for molecular simulations
and expanding the transformational impact of GNN models
in the area.
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Motivated by that, in this work, we investigate the potential
of knowledge distillation (KD) in enhancing the perfor-
mance and scalability of state-of-the-art GNNs for molec-
ular simulations. To this end, we devise custom strategies
for KD on molecular GNNs, which we call node-to-node
(n2n), edge-to-node (e2n) and vector-to-vector (v2v) knowl-
edge distillation. These overcome common limitations of
KD for regression tasks by facilitating the distillation of
hidden representations in directional and equivariant GNNs.
We evaluate the performance of our KD protocols in aug-
menting the training process of different student models -
without altering their architecture -trained to predict molec-
ular properties like energy and forces. We show that our
protocols substantially improve the performance of student
models while fully preserving throughput, reducing the per-
formance gap between models like GemNet-OC (Gasteiger
et al., 2022) and PaiNN (Schütt et al., 2021) by as much as
60.8% in energy predictions and 20.5% in force predictions
(Figure 1).

2. Background
Molecular simulations. In this work, we consider molecu-
lar systems at an atomic level, i.e., N atoms represented by
their atomic number z = {z1, ..., zN} ∈ ZN and positions
X = {x1, . . . ,xN} ∈ RN×3. Given a system, we want
a model that can predict the energy E ∈ R of the system,
and the forces F ∈ RN×3 acting on each atom. Both these
properties are of high interest when simulating molecular
systems. The energy of a system is essential for the pre-
diction of its stability, whereas the forces are important for
molecular dynamics simulations, where computed forces
are combined with the equations of motion to simulate the
evolution of the system over time.

GNNs for molecular systems. GNNs are a suitable frame-
work for modeling molecular systems. Each molecular
system (X, z) can be represented as a mathematical graph,
where the set of atoms corresponds to the nodes V , and edges
E created between nodes by connecting the closest neigh-
boring atoms (typically defined by a cutoff radius and/or a
maximum number of neighbors). Hence, in the context of
molecular simulations, we can create a GNN that operates
on atomic graphs G = (V, E) by propagating information
between the atoms and the edges, and makes predictions
about the energy and forces of each system in a multi-output
manner - i.e., Ê, F̂ = GNN(X, z).

The main problem when modeling molecules and molec-
ular properties are the number of underlying symmetries
to consider, most importantly rigid transformations of the
atoms. For instance, the total energy E of a system is not
affected by (i.e., is invariant to) rotations or translations of
the system. However, the forces F do change as we rotate
a system - i.e., they are equivariant to rotations. Therefore,

to make accurate predictions about molecular systems, it
is crucial to devise models that respect these symmetries
and other physical constraints. There is now a plethora
of diverse molecular GNNs that achieve that, e.g., SchNet
(Schütt et al., 2017), DimeNet (Gasteiger et al., 2020b;a),
PaiNN (Schütt et al., 2021), GemNet (Gasteiger et al., 2021;
2022), NequIP (Batzner et al., 2022), and SCN (Zitnick
et al., 2022).

Knowledge distillation. Knowledge distillation is a tech-
nique for compressing and accelerating ML models (Cheng
et al., 2018), which has recently demonstrated significant
potential in domains like computer vision (Wang & Yoon,
2021) and natural language modeling (Sanh et al., 2019).
The main objective of KD is to create more efficient models
by means of transferring knowledge (e.g. model parame-
ters and activations) from large, computationally expensive,
more accurate models, often referred to as teacher mod-
els, to simpler, more efficient models called student models
(Gou et al., 2021). Since the seminal work of Hinton et al.
(2015), the field has drastically expanded methodologically,
with the development of protocols that accommodate the
distillation of ”deeper” knowledge, more comprehensive
transformation and fusion functions, as well as more ro-
bust distillation losses (Gou et al., 2021; Hu et al., 2022).
Yet, these advances have mostly focused on classification,
resulting in methods of limited utility in regression tasks.
Moreover, most research in the area has been confined to
non-graph data (e.g., images, text, tabular data). Despite
recent efforts to extend KD to graph data and GNNs (Tian
et al., 2023), these have likewise concentrated on classifi-
cation tasks involving standard GNN architectures. Hence,
the application of KD to state-of-the-art molecular GNN
architectures, as well as to real-world regression problems
in molecular simulations, is still unexplored.

3. Method
The standard loss function when training molecular GNNs
is a loss that combines both the energy and force prediction
error as follows:

L0 = αELE(Ê, E) + αFLF(F̂ ,F ), (1)

where E and F are the ground-truth energy and forces, Ê
and F̂ are the predictions of the model of interest, and LE
and LF are some loss functions weighted by αE, αF ∈ R.

In KD, we augment this training process by defining an
auxiliary knowledge distillation loss term LKD, which is
added to L0 (with a factor λ ∈ R+) to derive a new training
loss function L of the form

L = L0 + λLKD. (2)

This was originally proposed in the context of classification
by levaraging that the soft label predictions (i.e., the logits af-
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ter softmax normalization) of a given (teacher) model carry
valuable information that can complement the ground-truth
labels in the training process of another (student) model
(Hinton et al., 2015). Since then, this has become the stan-
dard KD approach - often referred to as vanilla KD in the
literature, which is often the foundation of new KD proto-
cols. The main idea of this technique is to employ a KD loss
LKD that enforces the student to mimic the predictions of
the teacher model. This is usually achieved by constructing
a loss LKD = KL(zs, zt) based on the Kullback–Leibler
(KL) divergence between the soft logits of the student zs
and the teacher zt.

Feature-based KD. Instead of distilling the output only, we
focus on feature-based KD (Gou et al., 2021). This is an
extension of the vanilla KD, which is concerned with the
distillation of knowledge across the intermediate layers of
models (Romero et al., 2015). This allows more lightweight
models to be trained to mimic representations that can be
easier to assimilate compared to the final output directly
(Aguilar et al., 2020). In this paper, we perform distilla-
tion of intermediate representations by devising a loss on
selected hidden features Hs ∈ Us and Ht ∈ Ut in the student
and teacher models respectively, which takes the form

LKD = Lfeat(Ms(Hs),Mt(Ht)), (3)

where Ms : Us 7→ U and Mt : Ut 7→ U are transformations
that map the hidden features to a common feature space U ,
and Lfeat : U × U 7→ R+ is some loss of choice. Possible
options for the transformations Ms,Mt include the identity
transformation, linear projections and multilayer perceptron
(MLP) projection heads; whereas for the distillation loss
Lfeat, typical functions are mean squared error (MSE) and
mean absolute error (MAE).

Defining feature distillation strategies for molecular
GNNs. Unlike standard GNNs that often only consider
scalar node features, molecular GNNs can contain diverse
features (scalars, vectors and/or equivariant higher-order ten-
sors based on spherical harmonics) organized across nodes
and edges within a complex molecular graph. These are con-
tinually evolved by model-specific operators to infer molec-
ular properties, such as energy and forces, in a multi-output
prediction fashion. Therefore, features often represent dif-
ferent physical, geometric and/or topological information
relevant to specific parts of the output. This significantly
complicates the design of an effective KD strategy, espe-
cially when models differ architecturally.

In this work, we set out to devise KD strategies that are
representative and effective across various molecular GNNs.
Hence, we consider GNNs that have diverse architectures
and performance profiles, namely GemNet-OC (Gasteiger
et al., 2022), PaiNN (Schütt et al., 2021), and SchNet (Schütt
et al., 2017). Unlike typical student-teacher configurations,

Table 1. Molecular GNNs can have diverse features depending
on their architecture. This is an overview of the types of features
available in the three models we use in this study.

SchNet PaiNN GemNet-OC

Scalar node features ✓ ✓ ✓
Scalar edge features ✓
Vectorial node features ✓
Output blocks ✓

these models are characterized by distinct types of features,
including scalar node- and edge-features, and equivariant
geometrical vectors (see Table 1 for an overview and Ap-
pendix A for more information). Here, we leverage these
model dissimilarities and devise three distinct KD strategies:

- node-to-node (n2n): As all three models in this study con-
tain scalar node features Hnode, we can distill knowledge in
between these directly by defining a loss LKD, such that

LKD = Lfeat(Ms(Hnode,s),Mt(Hnode,t)). (4)

Note that this approach only utilizes node features, making
it applicable to standard GNNs, too. Previous work has
investigated other ways to distill information between node
features (e.g. in Joshi et al. (2022); He et al. (2022); Yu
et al. (2022)), yet in classification tasks involving simpler,
non-molecular GNNs only, which usually share the same
architecture. To take advantage of other types of features
relevant to molecular GNNs specifically, we further devise
two additional protocols below.

- edge-to-node (e2n): The GemNet-OC model relies heav-
ily on edge features, which are a key component in the
directional message passing defined in the architecture and
can be useful as a KD resource. However, the other models
considered here do not have similar edge features to distill
to. To accommodate that, we propose a KD strategy where
we transfer information from GemNet-OC’s edge features
Hedge,(i,j) by first aggregating them as follows:

Hedge2node,i =
∑

j∈N (i)

Hedge,(i,j), (5)

where i is the node index. The resulting vector Hedge2node,i
is a scalar, node-level feature, and we can, therefore, use it
to transfer knowledge to the student node features Hnode,s
as in Equation (4).

- vector-to-vector (v2v): Similarly, the PaiNN model de-
fines special vectorial features, which differ substantially
from the scalar (node and edge) features available in the
other models. These are not scalar and invariant to rigid
transformations of the atoms, but geometrical vectors that
are equivariant with respect to rotations. This poses a new
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Table 2. Evaluation of the performance of our KD strategies when distilling information from GemNet-OC into PaiNN. Best results are
given in bold. All models have been trained on the OC20-2M dataset. Numbers in brackets represent the proportion of the gap between
the student and the teacher that has been closed by the respective KD strategy (in %). The validation results presented here are averaged
across the four validation datasets available in OC20. The ditto mark ( ) indicates no change from previous row. Results for other
teachers-student configurations can be found in Appendix B.

Inference OC20 S2EF ValidationThroughput

Samples / Energy MAE Force MAE Force cos EFwT
Model GPU sec. ↑ meV ↓ meV/Å ↓ ↑ % ↑
GemNet-OC (teacher) 75.8 286 25.7 0.598 1.06
PaiNN (student) 237.8 440 45.3 0.376 0.14
Vanilla KD (1) 440(0.0%) 43.9(7.1%) 0.378(0.8%) 0.14(0.4%)
Vanilla KD (2) 419(13.6%) 114.8(-353%) 0.324(-23.8%) 0.13(-1.3%)
n2n 346(60.8%) 42.8(12.8%) 0.393(7.4%) 0.26(13.4%)
e2n 430(6.8%) 41.3(20.5%) 0.405(12.8%) 0.20(6.1%)
v2v 437(1.8%) 42.0(17.1%) 0.397(9.4%) 0.12(-1.6%)

challenge when distilling knowledge from or onto PaiNN.
To this end, we define a KD procedure, where we transfer
knowledge between (equivariant) vectorial node features
and (invariant) scalar edge features. We achieve that by
noting that scalar edge features sit on an equivariant 3D grid
since they are associated with an edge between two atoms
in 3D space. Hence, we can aggregate the edge features
{Hedge,(i,j)}j∈N corresponding to a given node i into node-
level equivariant vectorial features Hvec,i by considering
the unit vector uij = 1

|xj−xi| (xj − xi) that defines the
direction of the edge (i, j), such that

H
(k)
vec,i =

∑
j∈N (i)

ui,jH
(k)
edge,(i,j), (6)

with the superscript k indicating the channel. This fulfills
the condition of equivariance with respect to rotations, as
the vector u is equivariant to rotations, and H

(k)
edge,(i,j) is a

scalar, not influencing the direction.

Baseline KD strategies. To validate the performance of
our KD strategies, we evaluate their performance against 2
vanilla-based KD approaches suitable for regression tasks.

Vanilla (1): As mentioned above, the main problem with
using vanilla KD for regression is the lack of features analo-
gous to logits. One way of adapting vanilla KD for regres-
sion is by steering the student to mimic the final output of
the teacher directly (Xu et al., 2022):

LKD = αELE(Ês, Êt) + αFLF(F̂ s, F̂ t), (7)

where the subscripts s and t refer to the predictions of the
student and teacher, respectively. Note that, unlike in clas-
sification, this approach does not provide much additional
information in regression tasks, except for some limited sig-
nal about the error distribution of the teacher model (Cheng
et al., 2018; Saputra et al., 2019).

Vanilla (2): One way to enhance the teacher signal during
training is to consider the fact that many GNNs for molecu-
lar simulations make separate atom- and edge-level predic-
tions which are consequently aggregated into a final output.
For instance, the total energy E of a system is usually de-
fined as a sum of the predicted contributions from each
atom Ê =

∑
i Êi. Hence, we note that we can extend the

aforementioned vanilla KD approach by imposing a loss
on these granular predictions instead. Following the energy
definition above, the KD loss can be expressed as

LKD =
1

N

N∑
i=1

LE(Êi,s, Êi,t). (8)

These individual energy contributions are not part of the la-
beled data, but, when injected during training, provide more
fine-grained information than the aggregated prediction.

4. Experiments
To evaluate our proposed methods, we perform experiments
on the OC20-2M dataset (Chanussot et al., 2021) with the
models as implemented in the OC20 codebase1.

The results of our experiments are summarized in Table 2,
which provides information about the performance of the
baseline student (PaiNN) and teacher model (GemNet-OC),
and how this is influenced by the introduction of different
KD protocols. Our analyses demonstrate that KD can ef-
fectively boost the predictive performance of the student
model for both energy and force predictions without impos-
ing any additional computational constraints at inference
time. Using our bespoke KD strategies, we manage to distill

1https://github.com/
Open-Catalyst-Project/ocp

https://github.com/Open-Catalyst-Project/ocp
https://github.com/Open-Catalyst-Project/ocp
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knowledge from the teacher to the 4× faster student model,
while maintaining a substantial part of the predictive ac-
curacy of the teacher. In particular, we note that the n2n
loss reduces the energy MAE of PaiNN by more than 20%,
closing the gap to the teacher GemNet-OC by more than
60%. For force predictions, we observe the biggest improve-
ment with the e2n and v2v protocols, where with the former
we manage to close the performance gap between the two
models by more than 20%.

One caveat of knowledge distillation is that it inherently
increases the training time of a model. In our offline KD
setup, we need to perform additional forward passes through
the teacher to extract representations to distill to the student.
However, it is important to note that, despite increasing the
computational time per training step, we observed that mod-
els trained with KD consistently outperformed their baseline
counterparts even when compared at the same training time
point (Figure 2), despite the latter having been trained for
more steps/epoch in total. This means that, all in all, we
can use KD to enhance the predictive accuracy in models
without necessarily impacting training times.

Figure 2. Energy validation error of PaiNN without (blue) and with
(orange) knowledge distillation from GemNet-OC, trained for the
same number of steps (1 million). Validation on a random sample
of size 30k samples from the in-distribution OC20 validation set.

We also conduct similar analyses with: (1) PaiNN as a
teacher model and SchNet as a student model; (2) PaiNN as
a teacher model and a smaller version of PaiNN with fewer
layers and lower feature dimensions as a student model.
The results of these analyses, presented in Appendix B,
illustrate that we can successfully employ KD as an effective
approach for improving the performance and scalability of
molecular GNNs across teacher-student configurations of
varying levels of architectural and predictive disparity.

5. Conclusion
In this paper, we investigate the utility of knowledge distil-
lation as a means of distilling larger, more computationally
expensive GNNs for molecules into smaller and compu-

tationally faster models. We propose three distinct KD
strategies and show that they can significantly boost the
performance of different GNN models without any modi-
fications to their architecture. Hence, we confirm that KD
is a useful technique for addressing the pressing trade-off
between predictive accuracy and computational complexity
of modern GNNs for molecules. In particular, we demon-
strate that KD can allow us to run molecular simulations
faster without impairing predictive accuracy. Moreover, we
show that our KD strategies are robust and effective in di-
verse teacher-student configurations. With this work, we
aim to highlight the potential of knowledge distillation in en-
hancing the performance of molecular GNNs and stimulate
future research in the area.

Broader impact
The use of molecular GNNs can help to speed up molecular
simulations, which find applications in important scientific
disciplines, such as material science, drug discovery and
catalysis. Note that such applications can be potentially
harmful if models are used to simulate and discover systems
that are toxic or intended to be used in harmful technology.
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Noé, F., Tkatchenko, A., Müller, K.-R., and Clementi, C.
Machine learning for molecular simulation. Annual re-
view of physical chemistry, 71:361–390, 2020.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and
Dosovitskiy, A. Do vision transformers see like convolu-
tional neural networks? In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=Gl8FHfMVTZu.

Reiser, P., Neubert, M., Eberhard, A., Torresi, L., Zhou,
C., Shao, C., Metni, H., van Hoesel, C., Schopmans, H.,
Sommer, T., et al. Graph neural networks for materials
science and chemistry. Communications Materials, 3(1):
93, 2022.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta,
C., and Bengio, Y. Fitnets: Hints for thin deep nets, 2015.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert,
a distilled version of bert: smaller, faster, cheaper and
lighter. arXiv preprint arXiv:1910.01108, 2019.

Saputra, M. R. U., De Gusmao, P. P., Almalioglu, Y.,
Markham, A., and Trigoni, N. Distilling knowledge from
a deep pose regressor network. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 263–272, 2019.
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A. Description of features
• SchNet (Schütt et al., 2017): A simple GNN model based on continuous-filter convolutional layers, which only contains

scalar node features s ∈ Rd. These are used to predict the energy, Ê. The force is then calculated as the negative
gradient of the energy with respect to the atomic positions, i.e., F̂ = −∇Ê.

• PaiNN (Schütt et al., 2021): A GNN based on equivariant message passing, which contains scalar node features x ∈ Rd1

- used for energy prediction; as well as geometric vectorial node features, v ∈ R3×d2 that are equivariant to rotations and
can thus be combined with the scalar features to make direct predictions of the forces (i.e., without computing gradients
of the energy).

• GemNet-OC (Gasteiger et al., 2022): A GNN model that utilizes directional message passing. It contains scalar node
features h ∈ Rdh and scalar edges features m ∈ Rdm . After each block of layers, these are processed through an output
block, resulting in scalar node features x(i)

E and edge features x(i)
F , where i is the block number. The output features

from each block are aggregated into output features xE and xF , which are used to compute the energy and forces
respectively.

B. Full OC20 results
Here, we present our full results on the OC20-2M S2EF task. We investigated 3 different teacher-student configurations
with varying levels of architectural disparity as measured with central kernel alignment (Kornblith et al., 2019; Raghu et al.,
2021) (see Figure 3):

• same architecture: distilling our default PaiNN model (PaiNN-big) to a smaller version with four instead of six layers,
and 256 hidden dimensions instead of 512 (PaiNN-small);

• similar architecture: distilling PaiNN-big to SchNet;

• different architecture: distilling GemNet-OC to PaiNN-big.

We trained the models as implemented and configured in the OC20 codebase (https://github.com/
Open-Catalyst-Project/ocp).

Table 3 summarizes the performance of our models without any knowledge distillation, and Table 4 - those with knowledge
distillation.

Table 3. Baseline performance of the different GNN models considered in this study without knowledge distillation.
Inference OC20 S2EF ValidationThroughput

Samples / Energy MAE Force MAE Force cos EFwT
Model GPU sec. ↑ meV ↓ meV/Å ↓ ↑ % ↑
SchNet 788.2 1308 65.1 0.204 0
PaiNN-small 618.2 489 47.1 0.345 0.085
PaiNN-big 237.8 440 45.3 0.376 0.14
GemNet-OC 75.8 286 25.7 0.598 1.06

https://github.com/Open-Catalyst-Project/ocp
https://github.com/Open-Catalyst-Project/ocp
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Table 4. Model performance with knowledge distillation. The results are averaged across the four OC20 S2EF validation datasets.
OC20 S2EF Validation

Energy MAE Force MAE Force cos EFwT
Model meV ↓ meV/Å ↓ ↑ % ↑

sa
m

e

Student (PaiNN-small) 489 47.1 0.345 0.085
Teacher (PaiNN-big) 440 45.3 0.376 0.14
Vanilla KD (1) 515(−52.4%) 48.5(−81.0%) 0.269(−237%) 0.007(−28%)
Vanilla KD (2) 476(27.2%) 50.8(−215%) 0.307(−117%) 0.0068(−32.6%)
n2n 457(64.8%) 46.7(20.5%) 0.348(9.3%) 0.085(0.5%)
v2v 459(60.8%) 47.2(-9.1%) 0.347(6.8%) 0.079(-11.9%)

si
m

ila
r

Student (SchNet) 1308 65.1 0.204 0
Teacher (PaiNN-big) 440 45.3 0.376 0.14
Vanilla KD (1) 1214(10.8%) 64.6(2.3%) 0.2303(15.2%) 0.0025(1.8%)
Vanilla KD (2) 1216(10.5%) 64.6(2.5%) 0.229(14.5%) 0(0%)
n2n 1251(6.6%) 65.2(-0.5%) 0.223(11.1%) 0(0%)

di
ffe

re
nt

Student (PaiNN-big) 440 45.3 0.376 0.14
Teacher (GemNet-OC) 286 25.7 0.598 1.06
Vanilla KD (1) 440(0.0%) 43.9(7.1%) 0.378(0.8%) 0.14(0.4%)
Vanilla KD (2) 419(13.6%) 114.8(-353%) 0.324(-23.8%) 0.13(-1.3%)
n2n 346(60.8%) 42.8(12.8%) 0.393(7.4%) 0.26(13.4%)
e2n 430(6.8%) 41.3(20.5%) 0.405(12.8%) 0.20(6.1%)
v2v 437(1.8%) 42.0(17.1%) 0.397(9.4%) 0.12(-1.6%)

Figure 3. Similarity analysis between the node features of SchNet, PaiNN and GemNet-OC using CKA.


