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Abstract
Learning exchange correlation functionals, used
in quantum chemistry calculations, from data has
become increasingly important in recent years,
but training such a functional requires sophisti-
cated software infrastructure. For this reason,
we build open source infrastructure to train neu-
ral exchange correlation functionals. We aim
to standardize the processing pipeline by adapt-
ing state-of-the-art techniques from work done
by multiple groups. We have open sourced the
model in the DeepChem library to provide a
platform for additional research on differentiable
quantum chemistry methods.

1. Introduction
Density-functional theory (DFT) is used to calculate the
electronic structure of atoms, molecules, and solids. Its
objective is to use the fundamental laws of quantum me-
chanics to quantitatively comprehend the properties of ma-
terials. There are serious scaling limitations to traditional
methods used to approximate solutions to the Schrödinger
equation of N interacting electrons moving in an external
potential. Whereas in DFT, instead of the high-dimensional
many-body wave function, the density n(r) is a function
of three spatial coordinates. The many-body electronic
ground state can be described using single-particle equa-
tions and an effective potential thanks to the Kohn-Sham
theory (Kohn & Sham, 1965).

The effective potential is made up of three parts: the
exchange-correlation (XC) potential, which accounts for
many-body effects, the Hartree potential, which describes
the electrostatic electron-electron interaction, and the ionic
potential resulting from the atomic cores (Kurth et al.,
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2005; Pederson & Baruah, 2015). Mathematically, the en-
ergy contributors in DFT can be represented as

Etotal = Ekin + Eel + Exc (1)

The kinetic energy term is calculated using a fictitious non-
interacting system. The second term captures the elec-
trostatic interactions between electrons and nuclear cores.
A potential energy surface is derived using the Born-
Oppenheimer approximation to account for the electro-
static repulsion between the nuclear cores (Voss, 2022).
The most commonly used and simplest class of XC func-
tionals are the local-density approximations (LDA) which
mandate that Exc depends only on n(r) and not on its
derivatives. Functionals such as the LDA class are tra-
ditional approximate forms derived by humans and are
widely used due to their accuracy(Parr & Yang, 1995) .

1.1. DeepChem and Differentiable Physics

DeepChem is an open source python library for scien-
tific machine learning and deep learning on molecular and
quantum datasets (Ramsundar et al., 2021a). Deepchem
provides a framework to solve difficult scientific prob-
lems in areas such as drug discovery, energy calculations
and biotech (Wu et al., 2018). It does so by specify-
ing that scientific calculations must be broken down into
workflows built out of underlying primitives such as data
loaders, featurizers, data splitters, learned models, metrics
and hyperparameter tuners. This systematic design allows
DeepChem to be applicable to a wide variety of applica-
tions. For example, DeepChem has enabled large scale
benchmarking for molecular machine learning through the
MoleculeNet benchmark suite (Wu et al., 2018), protein-
ligand interaction modeling (Gomes et al., 2017), genera-
tive modeling of molecules (Frey et al., 2022), and more.

DeepChem aims to support open source differentiable pro-
gramming infrastructure for scientific machine learning,
but this effort is a work in progress (Ramsundar et al.,
2021b). This research program is broadly known as dif-
ferentiable physics (Ramsundar et al., 2021b). An impor-
tant application of differentiable physics is to use neural
architectures to accelerate the solution of differential equa-
tions. In this work, we aim to solve the self-consistent
Kohn Sham equations to calculate electron density n(r).
Typically, solution methods for self-consistent calculations
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can be slow. Differentiable techniques enable rapid calcu-
lations by introducing rich neural approximation schemes.

1.2. Differentiable DFT Methods

The incorporation of machine learning methods into DFT
has been going on for over a decade (Pederson et al., 2022).
Our model has been derived from XCNN (Kasim & Vinko,
2021). In this method, the xc-functional is learned using
a deep neural network and hybridized with a traditional
xc-functional. One of the biggest strengths of this ap-
proach, is that it is generalizable to a wide range of sys-
tems since the neural architecture does not depend on a
special physical system (Kasim & Vinko, 2021). Similarly,
another advance in this field was made by the DM21 func-
tional (Kirkpatrick et al., 2021), which was computed us-
ing fictional systems having fractional charge and spin con-
straints in order to avoid errors encountered by traditional
xc-functionals. These errors are observed for charge densi-
ties involving mobile charges and spins(Kirkpatrick et al.,
2021).

1.3. Standardizing Differentiable DFT Workflows

We aim to standardize (”deepchemize” (Ramsundar et al.,
2021a)) the computation performed by the differentiable
DFT model, by implementing the model using the work-
flow structure implemented by other DeepChem models.
To verify correctness, we run experiments and compare
results with the original XCNN model (Kasim & Vinko,
2021). By standardizing the process of training a neural
network exchange correlation functional, we aim to make
it simpler to experiment with new differentiable DFT archi-
tectures and enable larger systematic computations.

XCModel (the XCNN implementation in DeepChem), can
be used with different loss functions, metrics and machine
learned models present in DeepChem, providing a flexible
framework for xc-functional design. This flexibility of the
XCModel can be used to incorporate more global density
information to approximate a more accurate exchange cor-
relation functional. For example, we are currently planning
on introducing fractional constraints similar to the DM21
functional to the XCModel. This project would yield a
functional that is a combination of DM21 and XCNN. The
functional would be trained using a neural network and a
fully differentiable quantum chemistry library while also
being trained on data points that contain fictional systems
with fractional charges and spins.

Figure 1. Training data is provided in a Yaml format as displayed
above. Input data is processed with the DFTYamlLoader class.

2. Implementation
2.1. Dataset

There are four types of data points used to train XCModel:
atomization energy (AE) calculations, ionization poten-
tial (IP) calculations, density profile regulations and den-
sity matrix calculations. The ground truth values for the
first two types are obtained from NIST databases (Kasim
& Vinko, 2021), and the rest are calculated by perform-
ing CCSD calculations (using PYSCF (Sun et al., 2018)).
Users do not need to enter the equations used to calculate
the total energy for AE and IP data points. In (Kasim &
Vinko, 2021), the training dataset consists of all four types
of data points. However, we have only used AE, IP and
Density matrix calculations thus far. We have implemented
a DFTYamlLoaderclass in DeepChem that loads and pre-
pares data, and featurizes the data into standard molecular
objects. We use a specific format to build the yaml file.
Each molecule is known as an “entry” object , and contains
multiple “system” objects. Each system contains informa-
tion on the molecule description, basis set, charge, and spin
number. The true values are either numbers or .npy files.
For predictions, the true values do not need to be entered.
An example of a data point can be seen in Figure 1

2.2. Layers

A layer can be defined as a function that transforms a tensor
into another. The first layer in the XCModel is the Neural
Network XC (NNXC) layer, where the exchange correla-
tion functional is trained based on a pre-defined traditional
class of functionals. Currently we have implemented an
NNLDA and NNPBE layer. The electron and spin densities
are transformed to be the input of the neural network. We
plan to implement Meta-GGA based layers in the future.
The output from this layer is used in the HybridXC layer,
which computes XC energy by summing XC energy com-
puted from libxc (with any conventional DFT functional)
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and the trainable neural network with tunable weights. This
layers corresponds to equation 2 from (Kasim & Vinko,
2021)

EnnLDA[n] = αELDA(xc)[n] + β

∫
n(r)f(n, ε)dr (2)

The output from the HybridXC layer is used to calculate
the XC potential which is used to solve the self consis-
tent iterations. This process is carried out in the SCF
(Self Consistent Field) layer. The SCF iterations are done
using DQC’s fully differentiable KS modules (Kasim &
Sofroniew, 2021). This layer can also be used to perform
dft calculations without any NNXC, i.e, any traditional xc
functional. The outputs from this layer are the electron den-
sities. The gradient propagation of the self-consistency cy-
cle is done using an implicit gradient calculation instead
of linear mixing using xitorch (Kasim & Vinko, 2021).
These layers are used in the XCModel. An ordinary feed
forward neural network (implemented in PyTorch) can be
used to train the XC functional. The torch model can also
be used with various loss functions and metrics present in
DeepChem . In our experiments, we use a L2 loss to train
the model and mean absolute error (MAE) as the metric. A
schematic of the implementation can be seen in Figure 2.

3. Results and Observations
Table 1 is a comparison between MAE values for two dif-
ferent test datasets; when computed using various trained/
traditional functionals. The test datasets we use are: ion-
ization potential for the atoms H-Ar, and atomization en-
ergy for 16 Hydrocarbons. The exact molecules can be
found in the supplementary material of (Kasim & Vinko,
2021). Results indicate that the DeepChem implementa-
tion slightly trails the performance of the original imple-
mentation from (Kasim & Vinko, 2021), but we anticipate
that this gap will close once we complete the implementa-
tion. The training and testing for these experiments can be
run on a 16GB RAM CPU system. However, for testing on
larger molecules and datasets, a GPU system would likely
be required.

Calculations IP 18 AE 16 HC
LDA 24.6 48.7
XCNN-LDA-IP 15.2 25.4
DC-XCNN-LDA-IP 24.2 28.8

Table 1. MAE scores in kcal/mol for two test datasets

3.1. Hydrogen Dissociation

In Fig 3, we plot the dissociation energy for Hydrogen at
different points and compare the values with CCSD values.
The computed dissociation curve computed by XCModel
closely tracks the exact values.

Figure 2. Schematics of the exchange correlation XCModel. The
yaml files are loaded using the DFTYamlLoader and featurized
into mol objects using the DFT data classes. The model parame-
ters consist of the PyTorch model used to train the functional and
the choice of loss function. The forward method initializes the
Neural Network LDA layer (NNXC), and hybridizes the func-
tional with a traditional LDA functional. The hybrid xc is used
to solve the Kohn-Sham equations. Once the self consistent itera-
tions converge, the total energy of the data point is calculated and
used to calculate the loss. The trained model can be used with
DeepChem functions such as evaluate and predict with different
metrics (Kasim & Vinko, 2021; Ramsundar et al., 2021a)
.
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Figure 3. Hydrogen Dissociation Curve. The orange graph repre-
sents the exact values(Kasim, 2021) of the energy required for H2
to dissociate at different bond lengths. The blue graph represents
the predicted energies using the trained model. We have used 20
data points for this calculation.

4. Conclusion
From Table 1, we observe that the MAE deviations from
our model are slightly more accurate compared to a tra-
ditional LDA functional, despite not being as accurate as
XCNN (Kasim & Vinko, 2021). We can also conclude
from the hydrogen dissociation diagram that predicted val-
ues are quite close in value to the exact values. Since
XCModel is flexible with its parameters, we have also ex-
perimented with using various loss functions, metrics, and
PyTorch models to train the functional. In the near future,
we plan on implementing a few features to further increase
accuracy of the DFT calculations while also making the
model more versatile. These features include fractional
constraints on fictional systems, and layers based on PBE
and Meta-PBE. We anticipate that the open DeepChem im-
plementation will enable additional rapid experimentation
with differentiable xc-functional architectures.

5. Impact Statement
Differentiable DFT software infrastructure could enable
systematic construction of more accurate exchange corre-
lation functions, enabling DFT calculations to have greater
impact in materials design and biotechnology applications
where existing functionals lack accuracy today.
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