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Abstract

Integrating theoretical models within machine
learning models holds considerable promise for
constructing efficient and robust models. In bi-
ology, however, integration can be challenging
because the behavioral rules described by theo-
retical models are not necessarily invariant, in
contrast to problems in physics. Here, we propose
a hybrid architecture that hierarchically integrates
a biological pursuit model into deep reinforce-
ment learning. Our approach facilitates seamless
agent mode switching and rule-based action se-
lection, demonstrating efficient navigation in a
predator-prey environment. Interestingly, our re-
sults parallel the hunting behavior observed in
nature, offering novel insights into biology. As
our framework can be integrated with existing
hybrid or gray box models, it paves the way for
further exploration in this exciting intersection of
machine learning and biology.

1. Introduction
Hybrid or gray-box modeling, which blends learning-based
and theory-based approaches, has demonstrated improved
efficiency and robustness, with additional benefits to model
interpretability due to the inclusion of domain knowledge
(Takeishi & Kalousis, 2021; Zhang et al., 2022; Likmeta
et al., 2020).

Moreover, integrating learning-based and theory-based ap-
proaches can serve as a scientific tool to deepen our un-
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Figure 1. Hierarchical agent architecture. This hybrid model com-
poses of deep RL (upper) and a biological pursuit model (lower)

.

derstanding of real-world phenomena (Fujii et al., 2021).
This can be especially challenging in biology, where theory-
based models are not necessarily invariant, in contrast to
physical laws. For instance, behavioral rules of organisms
described as theoretical models may alter due to various
factors, such as learning through interaction with the envi-
ronment.

Nevertheless, there are commonalities in animal behavior
across many species that have been optimized over lengthy
evolutionary processes (Collett & Land, 1978; Brighton
et al., 2017; Brighton & Taylor, 2019; Ghose et al., 2006;
Kane et al., 2015; Tsutsui et al., 2020). Therefore, con-
structing hybrid models, in which commonalities are given
by theory-based models and differences are described by
learning-based models, might enhance our understanding of
biodiversity.

In this paper, we propose a hybrid architecture that hier-
archically integrates a biological pursuit model into deep
RL. This allows for seamless agent mode switching and
rule-based action selection, facilitating efficient and robust
navigation. We demonstrate that our hierarchical agents
can successfully balance reward acquisition and travel costs
in a predator-prey environment. Interestingly, our results
are reminiscent of hunting behaviors observed in large ter-
restrial mammals like lions, suggesting that our proposed
model could offer novel insights into biology.

The main contributions of the present study are as follows:
(1) We propose a framework for modeling the hierarchical
decision-making process of organisms. (2) Methodologi-
cally, we achieve navigation with acceleration/deceleration
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in the form of approximating a biological pursuit model that
assumes movement at a constant speed. (3) Our hierarchi-
cal model shows the potential to overcome the constraints
of existing biological models, which are often limited to
describing behavior in ideal environments (Fawcett et al.,
2014), and to depict biological behavior in more realistic
scenarios.

2. Methods
In this section, we provide an overview of the theoretical
basis of RL, deep RL, and the biological pursuit model,
and describe our proposed agent architecture that integrates
them hierarchically.

2.1. Reinforcement learning

We consider a sequential decision-making setting in which
an agent interacts with an environment E in a sequence of
observations, actions, and rewards. At each time-step t, the
agent observes a state st ∈ S and selects an action at from
a discrete set of actions A = {1, 2, . . . , |A|}. One time step
later, in part as a consequence of its action, the agent receives
a reward, rt+1 ∈ R, and moves itself to a new state st+1. In
the MDP, the agent learns policies that depend upon these se-
quences. The goal of the agent is to maximize the expected
discounted return (Sutton & Barto, 2018). The discounted
return Rt was defined as

∑T
k=0 γ

krt+k+1, where γ ∈ [0, 1]
is a parameter called the discount rate that determines the
present value of future rewards, and T is the time step at
which the task terminates. The Q-function or action-value
function is defined as Qπ(s, a) = Eπ[Rt|st = s, at = a],
where π is a policy mapping states to actions. The optimal
action-value function Q⋆(s, a) is then defined as the maxi-
mum expected discounted return achievable by following
any strategy, after observing some state s and then taking
some action a, Q⋆(s, a) = maxπ E[Rt|st = s, at = a, π].
The optimal action-value function can be computed recur-
sively obeying the Bellman equation:

Q⋆(s, a) = Es′∼E [r + γmax
a′

Q⋆(s′, a′|s, a)],

where s′ and a′ are the state and action at the next time-step,
respectively.

2.2. Deep Q-Networks (DQN) and its extensions

Deep Q-Networks (DQN) (Mnih et al., 2015) is a model-
free RL algorithm for discrete action spaces. In DQN, deep
neural networks and RL were successfully combined to
approximate the action values for a given state st. DQN
has been an important milestone, but several limitations of
this algorithm are known, and many extensions have been
proposed. Here, we briefly introduce three extensions, in or-
der, that have improved overall performance. Double DQN

(DDQN) is an algorithm that applies the double Q-learning
method to DQN (Van Hasselt et al., 2016). For DDQN,
the target network in the DQN architecture was used as the
second value function. Prioritized experience replay is a
method aimed at enhancing learning efficiency and efficacy
(Schaul et al., 2015). For prioritized replay, the probability
of sampling from the replay buffer is relative to the absolute
temporal-difference (TD) error. Dueling network is a neural
network architecture designed for value-based algorithms
(Wang et al., 2016). This architecture features two streams
of computation, the value and advantage streams, sharing a
common encoder, and is merged by an aggregation module
that produces an estimate of the state-action value function.

2.3. Biological pursuit behavioral rule

Chase and escape behaviors are crucial for survival in many
species, and therefore are efficient and robust by necessity
(Evans et al., 2019). These behaviors are thought as com-
plex phenomena in which two or more agents interact, yet
many studies have shown that the rules of behavior (e.g.,
which direction to move at each time in a given situation)
can be described by relatively simple mathematical models
consisting of the current state (e.g., positions and velocities).

Specifically, many predators are observed to maintain a
constant geographic direction in relation to their prey during
approach (Ghose et al., 2006). Because of its geometry,
this pursuit strategy is referred to as parallel navigation
(sometimes called constant bearing or constant absolute
target direction). This can be mathematically described as
follows:

β = arcsin

(
|vt| sinα

|vp|

)
,

where β, vp, vt, and α are the movement angle relative to
prey, the velocity of the predator, the velocity of the target,
and the angle between the velocity of target and a vector that
points from the target to the predator (Ghose et al., 2006;
Kane et al., 2015; Tsutsui et al., 2020). This strategy can
also be expressed in the form of a guidance law called pro-
portional navigation as follows: γ̇ = Nλ̇, where γ̇, N , and
λ̇ are turning rate, rotation rate of the line-of-sight (i.e., tar-
get direction), and the navigation constant (Brighton et al.,
2017). The parallel navigation can lead predators to move
along local shortest paths and guarantees eventual intercep-
tion of a target (Nahin, 2012). The widespread adoption of
this strategy by predators is thought to be linked to the use
of perceptual invariants. That is, by simply nullifying the
rate of change of the visual angle to the target, predators can
pursue a moving target (Brighton et al., 2017). However,
this simplistic model is not designed as a controllable model,
as described below.
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Figure 2. Comparison of cumulative rewards of predator agents

2.4. Hierarchical agents with integrated architecture

In this paper, we propose the integration of deep RL and
parallel navigation. The pursuit model consists of the cur-
rent information and thus can be smoothly incorporated into
standard deep RL methods for a finite MDP in which each
sequence is a distinct state. However, the pursuit model has
the limitation that it assumes pursuit at approximately con-
stant speed and calculates only the direction of movement.
This property does not control the navigation of agents in
complex environments with acceleration and deceleration.
Also, from a biological perspective, this limitation narrows
the scope of analysis, and indeed previous studies on mod-
eling predatory attacks are biased toward aerial predators,
which have a relatively constant speed.

Therefore, we propose a hierarchical agent structure that
overcomes these problems. Our hierarchical predator agent
consists of an upper layer that determines the magnitude
(mode) of movement and a lower layer that determines the
direction of movement (Fig. 1). The magnitude and direc-
tion are determined by deep RL and the biological pursuit
model, respectively. We aimed to construct a biologically
plausible (or considered to be more amenable to interpreta-
tion) simulation environment, and modeled an agent with
independent learning, in which each agent treats the other
agents as part of the environment (Tan, 1993). That is, in
contrast to previous studies (Silver et al., 2017; Christianos
et al., 2020; Lowe et al., 2017), our agents did not have
access to models of the environment and observations and
policies of other agents. For each agent n, the policy πn

was represented by a neural network and optimized in the
framework of DQN including DDQN, prioritized replay,
and dueling architecture. The loss function of each agent
takes the form:

Li(θi, ηi, ξi) = Es,a,r′,s′∼P(D)[(yi −Q(s, a; θi, ηi, ξi))
2],

where

yi = r+γQ(s′, argmax
a′

Q(s′, a′; θi, ηi, ξi|s, a; θ−i , η
−
i , ξ

−
i ),

and P (·) represents prioritized sampling; θ denotes the
parameters of the common layers, whereas η and ξ are the

parameters of the layers of the value and advantage streams,
respectively; θ−, η−, and ξ− denote those of the target-
network. For simplicity, we omitted the agent index n in
these equations. The inputs to the neural network consist
of subjectively available information about the environment
and the outputs are the mode, namely, chase or stalk.

We then determine the direction of movement using biolog-
ical pursuit model. However, as noted above, this model
assumes pursuit at a nearly constant speed and could be inap-
propriate for direct application to this study, which involves
acceleration and deceleration. Therefore, we designed to
choose an action that approximates parallel navigation as
follows:

a = argmin
a′

(ϕ− ϕ′),

where ϕ and ϕ′ denote absolute target direction at a current
and next time step, respectively. This approximation al-
lows the predator to choose actions that reduce the distance
while keeping the prey approximately in the same direction,
leading to efficient and robust navigation in physics-based
environments. The final outputs (actions) are accelerations
in 12 directions every 30 degrees in the relative coordinate
system to the prey, which was determined based on previous
findings on ecology (Wilson et al., 2018). We searched for
an action that minimizes the change in the absolute target
direction from -90 to 90 degrees on the approaching side.

For the prey agent, the policy πn is represented by a neural
network and directly optimized action selection. The actions
were selected from accelerations in 12 directions, as for the
predators.

3. Experiments
3.1. Environment

Agents are tasked with a predator-prey interaction in a
physics-based environment, which is a two-dimensional
world with continuous space and discrete time. This envi-
ronment was constructed by modifying the predator-prey
environment in MAPE (Lowe et al., 2017). The position
of each agent was calculated by integrating the accelera-
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Figure 3. Embedding of internal representations underlying efficient navigation

tion (i.e., selected action) twice with the Euler method, and
viscous resistance proportional to velocity was considered.
Modifications include constraining the movable space to the
range of -1 to 1 on the x and y axes, all agent (predator/prey)
disk diameters were set to 0.1, landmarks (obstacles) were
eliminated, and predator-to-predator contact was ignored
for simplicity. The predator(s) was rewarded for capturing
the prey (+1), namely for contact between the disks, and
punished for moving out of the area (-1). In addition, accel-
erating in the chase mode (120% of prey) required a cost
(negative reward) due to fatigue (see below) and that in the
stalk mode (60% of prey) was assumed to be negligible.
The prey was punished for being captured by the predator or
for moving out of the area (-1), and no cost was considered
for acceleration. The predator and prey were represented
as a red and blue disk, respectively, and the play area was
represented as a black square surrounding them. The time
step was 0.1 s and the time limit in each episode was set to
30 s. The initial position for each episode was randomly
selected from a range of -0.5 to 0.5 on both the x and y axes.

3.2. Experimental conditions

We selected the number of predators, cost (negative reward)
of chase, and prey (positive reward) sharing as experimental
conditions, based on ecological findings (Bailey et al., 2013;
Lang & Farine, 2017). For the number of predators, three
conditions were set: 1 (one), 2 (two), and 3 (three). In all
these conditions, the number of preys was set as 1. For the
cost of chase, two conditions were set: 0.01 (low) and 0.1
(high) for the acceleration exerted by the predator in the
chase mode. The cost in the stalk mode was assumed to be
negligibly small, namely 0, in both conditions. For the prey
sharing, two conditions were set: with sharing (shared), in
which all predators were rewarded when a predator catches
the prey, and without sharing (individual), in which a preda-
tor was rewarded only when it catches prey by itself. In
total, there were 10 conditions.

3.3. Training details

The neural network is composed of four layers. The inputs
to the neural network are the positions of oneself and oth-
ers in the absolute coordinate system (x- and y-positions)
and the positions and velocities of oneself and others in the
relative coordinate system (u- and v-positions and u- and

v-velocities), which were determined based on findings in
ethology (Brighton et al., 2017) and neuroscience (O’Keefe
& Dostrovsky, 1971). We assumed that delays in sensory
processing are compensated for by estimation of motion of
self (Wolpert et al., 1998; Kawato, 1999) and others (Tsut-
sui et al., 2021) and the current information at each time
was used as input as is. The model was trained for 106

episodes, and the network parameters were copied to the
target-network every 2000 episodes. The replay memory
size was 104, the minibatch size was 32, the learning rate
was 10−6, and the discount factor γ was 0.9. We used an
ε-greedy policy as the behavior policy πn, which chooses
a random action with probability ε or an action according
to the optimal Q function argmaxa∈A Q⋆(s, a) with proba-
bility 1− ε. In this study, ε was annealed linearly from 1 to
0.1 over the first 104 time steps and fixed at 0.1 thereafter.

3.4. Evaluation

The model performance was evaluated using the trained
model. During the evaluation, ε was set to 0 in the predator
agents, and each predator agent took greedy actions. Since
the focus of this study is on predator agents, ε was left at
0.1 in the prey agent for behavioral consistency with the
training. In the evaluation, we simulated 1000 episodes in
each condition.

We first show the mean cumulative rewards of predators in
each episode for each condition (Fig. 2). This figure in-
cludes the mean cumulative rewards when a predator agent
always selected to chase or to stalk, as baselines for com-
parison. At this time, we fixed for the other predators’ and
prey’s behaviors. As shown in this figure, our hierarchi-
cal model outperformed the baselines in many cases (16
of 22 panels), and seems to be fairly good performance
considering that the prey agent was optimized for the hierar-
chical predator agents. In addition, even in cases where the
value was not the highest, it was close to the highest value
(96% of the highest value on average). Furthermore, each
predator agent learned independently, yet the trend in re-
sults was consistent among the predators within conditions.
This indicates that the hierarchical model learned stably and
behaved efficiently depending on the task, regardless of the
experimental conditions.

To better understand how such efficient navigation is ac-
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complished, we analyzed predators’ internal representations
using t-SNE (Van der Maaten & Hinton, 2008). We visual-
ized the last hidden layers of the state streams in the policy
network of predator agents in the two-predator condition
(Fig. 3). Coloring the embedding, we found that each state
value corresponds with the distance between predators and
prey. For example, in the individual condition, the repre-
sentation of predator 1 showed a high state value for the
cyan-colored state. Conversely, the representation of preda-
tor 2 showed a high state value for the magenta-colored
state. This result is consistent with intuition, since under the
condition the two predators could be considered rivals com-
peting with each other for prey. Additionally, the difference
in the mode selection tendencies under the low and high
cost conditions resonates with predators in nature, where
predators that rapidly exhaust their metabolic resources dur-
ing a chase tend to first stalk their prey, slowly approaching
their prey to decrease chase distance and time (Mech, 1970).

4. Conclusion
In this study, we introduced a hierarchical agent that in-
tegrates deep RL with a biological mathematical model,
and demonstrated its usefulness in a multi-agent interactive
environment, as well as its potential for understanding real-
world organisms such as wild animals. While incorporating
functions such as obstacle avoidance presents challenges,
the introduction of deep RL integration for each behavioral
module (e.g., (Johannink et al., 2019)) could be beneficial.
Our framework is compatible with existing hybrid or gray
box models, underscoring the value of further research.
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as introduced in our research provides a novel approach in
understanding complex multi-agent environments. This can
revolutionize how we study not only artificial intelligence
systems, but also biological organisms and their interac-
tions. From a societal standpoint, the implications of this
study extend to practical applications like crowd manage-
ment, traffic systems, or robotic coordination. Implementing
this approach can lead to more efficient systems, benefiting
society as a whole. However, there may also be negative

implications. For example, the misuse of such technologies
may potentially lead to intrusive surveillance systems or
autonomous weapons. Hence, it is crucial to accompany fur-
ther development in this field with strict ethical guidelines
and regulations. This statement is a brief overview, and the
actual effects can be more extensive and varied. Therefore,
we emphasize the importance of continual dialogue between
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