
Good Lattice Accelerates Physics-Informed Neural Networks

Takashi Matsubara 1 Takaharu Yaguchi 2

Abstract

Physics-informed neural networks (PINNs) can
solve partial differential equations (PDEs) by min-
imizing the physics-informed loss, ensuring the
neural network satisfies the PDE at given points.
However, the solutions to a PDE are infinite-
dimensional, and the physics-informed loss is a
finite approximation to a certain integral over the
domain. This indicates that selecting appropriate
points is essential. This paper proposes “good
lattice training” (GLT), a technique inspired by
number theoretic methods. GLT provides an opti-
mal set of collocation points and can train PINNs
to achieve competitive performance with smaller
computational cost.

1. Introduction
Many real-world phenomena can be represented by partial
differential equations (PDEs), and solving PDEs is an im-
portant topic in computational science. A PDE is defined
as N [u] = 0, where N is a (possibly nonlinear) differential
operator, u : Ω → R is an unknown function, and Ω ⊂ Rs

is the domain. Various computational methods have been de-
veloped for solving PDEs. However, due to limited progress
in computer architecture development, there is a need for
computationally efficient alternatives. One promising ap-
proach is physics-informed neural networks (PINNs)(Raissi
et al., 2019), which train a neural network to satisfy the
PDE N [ũ] = 0. Specifically, PINNs minimize the squared
error ∥N [ũ](xi)∥2 at a finite set of collocation points xi to
ensure that the output ũ satisfies the equation N [ũ](xi) = 0.
This objective, known as the physics-informed loss, is the
core idea of PINNs (Wang et al., 2022; Wang & Perdikaris,
2023).
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Figure 1. Examples of 144 sampled collocation points.

However, the solutions u to PDEs are infinite-dimensional,
and the distance involving ũ or u must be defined by an inte-
gral over the domain Ω. In this sense, the physics-informed
loss provides a finite approximation to the squared 2-norm
|N [ũ]|22 =

∫
Ω
∥N [ũ](xi)∥2dx in the function space L2(Ω),

and the discretization errors affect the training efficiency.
Using a smaller number N of collocation points reduces ac-
curacy and performance, while a larger number N increases
computational cost (Bihlo & Popovych, 2022; Sharma &
Shankar, 2022). Hence, selecting appropriate collocation
points is crucial. Previous studies have used Latin hyper-
cube sampling (LHS) to determine collocation points (Raissi
et al., 2019; Zeng et al., 2023) as well as uniformly random
sampling (Jin et al., 2021; Krishnapriyan et al., 2022). Fig-
ure 1 illustrates these methods.

In the field of numerical analysis, the relationship between
integral approximation and collocation points has been ex-
tensively studied. Inspired by number theoretic methods
for numerical analysis, we propose good lattice training
(GLT) for PINNs. GLT provides an optimal set of colloca-
tion points, as shown in Fig. 1, when the activation func-
tions of the neural networks are sufficiently smooth. Our
experiments demonstrate that GLT requires significantly
fewer collocation points compared to other methods while
achieving similar errors, leading to a substantial reduction
in computational cost.

Related Work Neural networks have attracted attention as
computational tools for solving differential equations, par-
ticularly PDEs (Dissanayake & Phan-Thien, 1994; Lagaris
et al., 1998). Recently, a refinement to this approach called
PINNs was introduced by Raissi et al. (2019). The core idea
of PINNs is the physics-informed loss (Wang et al., 2022;
Wang & Perdikaris, 2023). This loss function measures how
well the output ũ of the neural network satisfies a given PDE
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N [u] = 0 along with its associated initial and boundary con-
ditions B[u] = 0. The physics-informed loss has also been
incorporated into other models such as DeepONet (Lu et al.,
2019; Wang & Perdikaris, 2023).

PINNs have been applied to various PDEs in recent stud-
ies (Bihlo & Popovych, 2022; Jin et al., 2021; Mao et al.,
2020), and significant efforts have been made to improve
learning algorithms and objective functions (Hao et al.,
2023; Heldmann et al., 2023; Lu et al., 2022; Pokkunuru
et al., 2023; Sharma & Shankar, 2022; Zeng et al., 2023).
In these studies, the loss functions based on the PDE itself,
rather than data, including the original physics-informed
loss, are defined by evaluating errors at a finite set of colloca-
tion points. As shown in previous works (Bihlo & Popovych,
2022; Sharma & Shankar, 2022), there is a trade-off between
the number of collocation points (and hence computational
cost) and the accuracy of the solution. Therefore, selecting
collocation points that effectively cover the entire domain is
crucial for obtaining better results, although this aspect has
often been overlooked. An exception is found in the work
of Mao et al. (2020), where additional collocation points
were sampled around regions with discontinuities to capture
them efficiently. However, such an approach is not always
feasible.

2. Method
2.1. Motivation

For simplicity, we consider the cases where the target PDE
is defined on an s-dimensional unit cube [0, 1]s. Given a
set of collocation points {xj | j = 1, . . . , N}, the physics-
informed loss is defined as

1
N

∑N
j=1 ∥N [ũ](xj)∥2 (1)

ũ is an approximate solution represented by a neural net-
work. However, for ũ to become the exact solution, this
physics-informed loss should be 0 for all x, not just at col-
location points. Therefore, the loss function defined by the
following integral must be minimized:∫

[0,1]s
∥N [ũ](x)∥2dx. (2)

In other words, the practical minimization of (1) essentially
minimizes the approximation of (2) with the expectation that
(2) will be small enough and hence ũ becomes an accurate
approximation to the exact solution.

2.2. Good Lattice Training

Definition 2.1 (Niederreiter (1992); Sloan & Joe (1994);
Zaremba (2014)). A lattice L in Rs is defined as a finite set
of points in Rs that is closed under addition and subtraction.

Given a lattice L, the set of collocation points is defined as
L ∩ [0, 1]s =: {x1, . . . ,xN}. In this paper, we consider an

appropriate lattice for computing the physics-informed loss.
Considering that the loss function to be minimized is (2), it
is natural to determine the lattice L (the set of collocation
points xj’s) so that the difference |(2)− (1)| of the two loss
functions is minimized.

Suppose that ε(x) := ∥N [ũ](x)∥2 is smooth enough and
admits the Fourier series expansion:

ε(x) := ∥N [ũ](x)∥2 =
∑

h ε̂(h) exp(2πih · x),

where i denotes the imaginary unit and h =
(h1, h2, . . . , hs) ∈ Zs. Substitution of this Fourier series
yields

|(2)− (1)| = | 1N
∑N

j=1

∑
h∈Zs,h̸=0 ε̂(h) exp(2πih · xj)|

(3)
where the equality follows from the fact that the
Fourier mode of h = 0 is equal to the integral∫
[0,1]s

∥N [ũ](xj)∥2dx. In addition, the dual lattice of lat-
tice L and an insightful lemma are introduced:
Definition 2.2 (Niederreiter (1992); Sloan & Joe (1994);
Zaremba (2014)). A dual lattice L⊤ of a lattice L is defined
as L⊤ := {h ∈ Rs | h · x ∈ Z, ∀x ∈ L}.
Lemma 2.3 (Niederreiter (1992); Sloan & Joe (1994);
Zaremba (2014)). For h ∈ Zs, it holds that

1
N

∑N
j=1 exp(2πih · xj) =

{
1 (h ∈ L⊤)

0 (otherwise.)

Based on this lemma, we restrict collocation points xj to
the form L = {decimal part of j

N z | j = 0, . . . , N − 1}
with a fixed integer vector z. We consider to search a vector
z instead of xj’s. Then, the optimal collocation points xj’s
do not need to be stored as a table of numbers. Then, (3) is
upper-bounded by∑

h∈Zs,h ̸=0,h·z≡0 (mod N) |ε̂(h)|, (4)

and hence the collocation points xj’s should be determined
so that (4) becomes small.

In particular, optimal solutions have been investigated for
integrands in the Korobov spaces, which are spaces of func-
tions that satisfy a certain smoothness condition.
Definition 2.4 (Niederreiter (1992); Sloan & Joe (1994);
Zaremba (2014)). The function space that is defined as
Eα = {f : [0, 1]s → R | ∃c, |f̂(h)| ≤ c/(h̄1h̄2 · · · h̄s)

α}
is called the Korobov space, where f̂(h) is the Fourier
coefficients of f and k̄ = max(1, |k|) for k ∈ R.

It is known that if α is an integer, for a function f to be
in Eα, it is sufficient that f has continuous partial deriva-
tives ∂q1+q2+···+qsf/∂q1

1 · ∂q2
2 · · · ∂qs

s , 0 ≤ qk ≤ α (k =
1, . . . , s). For example, if a function f(x, y) : R2 → R has
continuous fx, fy, fxy , then f ∈ E1.

We also introduce the following theorem.
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Theorem 2.5 (Sloan & Joe (1994)). If N ≥ 2 is any integer
and s ≥ 2, there exists a z ∈ Zs such that

Pα(z, N) ≤ (2 logN)αs

Nα +O
(

(logN)αs−1

Nα

)
,

where

Pα(z, N) =
∑

h·z≡0 (mod N)
1

(h̄1h̄2···h̄s)α
.

The main result of this paper is the following.

Theorem 2.6. Suppose that the activation function of ũ and
hence ũ itself are sufficiently smooth so that there exists an
α > 0 such that ∥N [ũ]∥2 ∈ Eα. Then, for given integers
N ≥ 2 and s ≥ 2, there exists an integer vector z ∈ Zs

such that L = {decimal part of j
N z | j = 0, . . . , N − 1} is

a “good lattice” in the sense that∫
[0,1]s

∥N [ũ](x)∥2dx

≤ 1
N

∑
xj∈L ∥N [ũ](xj)∥2 +O

(
(logN)αs

Nα

)
.

(5)

The proof is as follows. When ∥N [ũ]∥2 ∈ Eα, Because of
Definition 2.4 and (3), there exists a z ∈ Zs such that

|(2)− (1)| ≤
∑

h∈Zs,h ̸=0,h·z≡0 (mod N)
c

(h̄1h̄2···h̄s)α

From Theorem 2.5, there exists a z ∈ Zs such that

|(2)− (1)| ≤ cPα(z, N)

and hence
(2) ≤ (1) +O

(
(logN)αs

Nα

)
.

In this paper, we call the learning method that minimizes

1
N

∑
xj∈L ∥N [ũ](xj)∥2

for a lattice L that satisfies (5) the good lattice training
(GLT). The proposed GLT, of which the order of the con-
vergence is O( (logN)αs

Nα ), can converge much faster to the
integrated loss (2) than the uniformly random sampling (i.e.,
the Monte Carlo method, of which the order of the conver-
gence is O(1/

√
N)).

2.3. Implementation and Practice

One can take the integer vector z from numerical tables.
For example, when N = 13, z = (1, 8) gives a good lattice
L = {(0, 0), ( 1

13 ,
8
13 ), (

2
13 ,

3
13 ), (

3
13 ,

11
13 ), . . .}.

The lattice can be shifted periodically. Therefore, the
physics-informed loss based on GLT is as follows.

1
N

∑N−1
j=0

∥∥N [ũ]
({

z
N + r

})∥∥2 , r ∼ U([0, 1])s, (6)

where {·} gives the decimal part of each element of the
input, and U([0, 1]s) is the uniform distribution over the

interval [0, 1]s. Our preliminary experiments confirmed that,
if using the stochastic gradient descent (SGD) algorithms,
resampling the random numbers r at each training iteration
prevents the neural network from overfitting and improves
training efficiency.

Because GLT is based on the Fourier series expansion,
it is basically assumed that the loss function is periodic.
This problem can be addressed by variable transforma-
tions (Sloan & Joe, 1994). Moreover, our preliminary results
demonstrated that GLT is effective even for non-periodic
functions in practice.

For GLT to be effective, the neural network should be
smooth, and as is well-known, this condition is satisfied
if the activation function is smooth enough. However, if the
true solution u is not a smooth function, the smoothness of
the neural network ũ is expected to decrease as ũ approaches
u. Actually, in such cases, although the differentiability of
the activation function guarantees that u ∈ Eα, the Fourier
coefficients may increase. Therefore, the convergence in
the final stage of training may be slowed down if the true
solution is not smooth.

3. Experiments and Results
3.1. Experimental Settings

We modified the code from the official repository1 of Raissi
et al. (2019), the original paper of PINNs. We obtained the
datasets of the nonlinear Schrödinger (NLS) and Korteweg–
De Vries (KdV) equations. These datasets provide numeri-
cal solutions to initial value problems with periodic bound-
ary conditions. Although they contain numerical errors, we
treated them as the true solutions u.

Unless otherwise stated, we followed the repository’s experi-
mental settings for the NLS equation. The physics-informed
loss was defined as L(ũ) = 1

N

∑N
i=1 ∥N [ũ](xi)∥2 given

N collocation points x1,x2, . . . ,xN . This can be re-
garded as a finite approximation to the squared 2-norm
|N [ũ]|22 =

∫
Ω
∥N [ũ](x)∥2dx. We used other losses to

learn the initial and boundary conditions for the NLS equa-
tion, while we used the technique in Lagaris et al. (1998)
to ensure the conditions for KdV equations. The state of
the NLS equation is complex; we simply treated it as a
2D real vector for training and used its absolute value for
evaluation and visualization. We trained PINNs using the
Adam optimizer with cosine decay of a single cycle to
zero (Loshchilov & Hutter, 2017) for 200,000 iterations
and sampling a different set of collocation points at each
iteration; we found that this strategy improves the final per-
formance. We evaluated the performance using the relative
error, which is the normalized squared error L(ũ, u;xi) =

1https://github.com/maziarraissi/PINNs

https://github.com/maziarraissi/PINNs
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Figure 2. The number N of collocation points and relative error L.

Table 1. Number of Points at Competitive Performance.

NLS KdV

• uniformly random 6,765 10,946
•LHS 4,181 17,711
•GLT (proposed) 610 987

Table 2. Relative Error at Competitive Number of Points

NLS KdV

• uniformly random 7.60×10−3 3.32×10−3

•LHS 6.45×10−3 2.94×10−3

•GLT (proposed) 1.55×10−3 1.90×10−3

(
∑Ne

i=1 ∥ũ(xi) − u(xi)∥2)1/2/(
∑Ne

i=1 ∥u(xi)∥2)
1/2

at pre-
defined Ne collocation points xi. This is also a finite ap-
proximation to |ũ− u|2/|u|2.

We determined the collocation points using uniformly ran-
dom sampling, LHS, and the proposed GLT. For the GLT,
we took the number N of collocation points and the corre-
sponding integer vector z from numerical tables in (Fang
& Wang, 1994; Keng & Yuan, 1981). To maintain con-
sistency, we used the same value of N for both uniformly
random sampling and LHS. We conducted five trials for
each number N and each method.

3.2. Performance Results

Figure 2 shows the average relative error L with solid lines
and the maximum and minimum errors with shaded areas.
These results demonstrate that as N increases, the relative
error L decreases and eventually reaches saturation. This is

−2.5

0.0

2.5

NLS

−2

0

2

KdV

Figure 3. Example results with competitive numbers N of collo-
cation points (on vertical green line in Fig. 2). The leftmost panel
shows the true solution. The remaining panels show the residuals
of PINNs’ results multiplied by 100, obtained using uniformly
random sampling, LHS, and GLT, from left to right.

because of numerical errors in the datasets, discretization
errors in relative error L, and the network capacity.

We report the minimum numbers N of collocation points
with which the relative error L was saturated in Table 1.
Specifically, we consider a relative error L below 130 %
of the minimum observed one as saturated; the thresholds
are denoted by horizontal red lines in Fig. 2. The pro-
posed GLT demonstrated equivalent performance with sig-
nificantly fewer collocation points. This suggests that the
proposed GLT can achieve comparable performance with
significantly less computational cost. Next, we equalized
the number N of collocation points (and therefore, the com-
putational cost). In Table 2, we report the relative error
L for collocation points with which the relative error L of
one of the comparison methods saturated, as denoted by
vertical green lines in Fig. 2. A smaller loss L indicates
that the method performed better than others with the same
computational cost. The proposed GLT yielded nearly half
or less of the relative error L. We show the true solutions
and the residuals of example results with such N in Fig. 3.

4. Conclusion
This paper highlighted that the physics-informed loss, com-
monly used in PINNs and their variants, is a finite approx-
imation to the integrated loss. From this perspective, we
proposed good lattice training (GLT) to determine collo-
cation points. This method enables a more accurate ap-
proximation of the integrated loss with a smaller number of
collocation points. Experimental results demonstrated that
the GLT can achieve competitive or superior performance
with much fewer collocation points. These results imply a
significant reduction in computational cost and contribute
to the large-scale computation of PINNs.

This study was partially supported by JST CREST (JP-
MJCR1914), PRESTO (JPMJPR21C7), Moonshot R&D
(JPMJMS2033), and JSPS KAKENHI (20K11693).
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Broader Impact
This study accelerates the training of PINNs, and potentially
motivates further studies that combine numerical analysis
and deep learning.
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