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Abstract
Graph neural networks (GNNs) provide an ar-
chitecture consistent with the physical nature of
molecules and crystals, and have proven capa-
ble of efficiently learning their properties, par-
ticularly from density functional theory (DFT)
calculations. When used in atomistic modeling,
general-purpose GNNs can unlock new areas of
research in materials science and chemistry. In
this paper, we present an end-to-end molecular
dynamics workflow coupled with a large-scale
E(3)-equivariant GNN-based general-purpose in-
teratomic potential to model amorphous solids
in any inorganic chemistry. Using this approach
in high-throughput, we predict the structures and
energetics of a large number of inorganic binary
amorphous systems, with close to 28,800 unique
compositions. By comparing the predicted ener-
gies of amorphous solids to DFT, we show that
general-purpose GNN potentials provide strong
zero-shot capability in modeling these systems.

1. Introduction
Machine learning has become indispensable for molecular
level modeling in materials science and chemistry, partic-
ularly in replacing expensive quantum-mechanical simula-
tions for fast property predictions in ideal molecules and
crystals. For modeling complex materials with quantum-
mechanical fidelity, such as amorphous, disordered, defect-
bearing or dynamic systems, machine learning interatomic
potentials trained on data with a few chemical elements
are showing promise (Behler & Parrinello, 2007; Bartók
et al., 2010; Artrith et al., 2011; Schütt et al., 2018).
Recently, researchers have shown graph neural networks
(GNNs) (Gilmer et al., 2017; Battaglia et al., 2018) can
be trained on large and chemically-diverse density func-
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tional theory data sets of materials (Jain et al., 2013; Kirklin
et al., 2015), progressing towards general-purpose inter-
atomic potentials with no chemical restrictions (Chen &
Ong, 2022; Batzner et al., 2022; Choudhary et al., 2023). In
this work, we present an end-to-end workflow that combines
molecular dynamics with general-purpose E(3)-equivariant
GNN potentials to predict properties of amorphous solids
with chemical flexibility. In particular, while prior stud-
ies on amorphous materials with machine learning poten-
tials showed success in modeling of individual systems of
interest (Deringer et al., 2021; Artrith et al., 2018), here
we explore a large array of metal-metal, metal-nonmetal
and nonmetal-nonmetal binaries concurrently, and observe
strong zero-shot capability in constructing the amorphous
structures (i.e. via melt-quench) and predicting the forma-
tion energies of these structures. This study constitutes
one of the first large-scale applications of general-purpose,
chemically transferable GNNs in modeling disordered mate-
rials, and shows that the acceleration experienced in materi-
als research by discovery of new crystals in broad chemical
and structural searches with deep learning is possible also
in the domain of non-crystalline materials with the new
general-purpose machine learning potentials.

2. Computational Workflow
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Figure 1. Workflow for generating amorphous structures with
molecular dynamics and GNN potentials.

Despite their lack of crystalline symmetry, amorphous solids
are far from random and their structure-derived properties
are controlled by local order present in their atomic con-
figurations (Hirata et al., 2011; Cubuk et al., 2015). The
objective of the workflow outlined in Figure 1 is to capture
this local order in amorphous solids with high computa-
tional efficiency and acceptable fidelity, and in turn make
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rapid and accurate structural and energetic predictions for
many systems. While non-crystalline materials appear un-
der various synthetic conditions, the most common path is
quenching the molten state to low temperature. We mimic
this ubiquitous melt-and-quench process in molecular dy-
namics (MD) for rapid generation of amorphous structures
with interatomic interactions defined by a GNN potential.

The first stage of our workflow is to randomly pack N atoms
in a cubic box as the initial configuration. This initialization
choice ensures rapid equilibration of the liquid and avoids
carrying over any fingerprints from a crystal to the melt.
Since amorphous materials typically have a lower density
than their crystalline counterparts, following the reported
heuristics (Aykol et al., 2018), the volume-per-atom of the
box is set as 15% larger than that of the stable crystalline
phase (or compositional average if there are multiple phases)
in the Materials Project database (Jain et al., 2013) at that
composition. N is selected as 100, a small but sufficient size
for inorganic systems that allows us to maintain throughput
and efficiency. To minimize atomic overlaps, the initial
random atomic positions are relaxed briefly using a soft-
sphere potential and a gradient-descent algorithm (Bitzek
et al., 2006), which otherwise causes instabilities in MD.
In the MD stage, we first equilibrate the system at 3,000
K for 1,500 steps and cool down to 300 K in 2,500 steps,
where the system is equilibrated for another 1,500 steps, all
with a timestep of 2 fs in an NV T ensemble using a Nose-
Hoover thermostat. We automated this workflow with jax-
md (Schoenholz & Cubuk, 2019) to run in high-throughput
mode. We use our implementation of the E(3)-equivariant
graph network potential NequIP by Batzner et al. (2022)
trained on several million DFT calculations of inorganic
materials.1 The potential uses 3 layers of message passing,
even irreps up to `max = 2, and a two-layer radial MLP
with 64 neurons acting on a radial basis of eight Bessel
functions (Merchant et al., 2023).

3. Results and discussion
We applied the workflow in Figure 1 to ∼3,200 binary sys-
tems encompassing metal-metal systems formed by 67 met-
als (Ac, Ag, Al, Au, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu,
Dy, Er, Eu, Fe, Ga, Gd, Hf, Hg, Ho, In, Ir, K, La, Li, Lu, Mg,
Mn, Mo, Na, Nb, Nd, Ni, Np, Os, Pa, Pb, Pd, Pm, Pr, Pt, Pu,
Rb, Re, Rh, Ru, Sc, Sm, Sn, Sr, Ta, Tb, Tc, Th, Ti, Tl, Tm,
U, V, W, Y, Yb, Zn, Zr), metal-nonmetal systems formed by
these metals and 14 nonmetals (As, B, Br, C, Cl, F, Ge, N,
O, P, S, Sb, Si, Te) and lastly, solid forming binary combina-
tions of these nonmetals. Over a grid of 10% composition

1DFT calculations were run with high-fidelity settings compati-
ble with Materials Project (Jain et al., 2013; Ong et al., 2013) using
the Vienna Ab-initio Simulation Package (Kresse & Furthmüller,
1996).
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Figure 2. Evolution of the energy and temperature of the system
during the GNN-driven melt and quench MD process for generat-
ing amorphous Ti2O3. Different stages in MD described in text
are colored differently. Radial distribution functions of the final
amorphous configuration are also shown.

increments, we scanned ∼28,800 unique compositions to
create amorphous solids in atomistic simulations. This is a
scale difficult to achieve with ab-initio molecular dynamics.

An example for the evolution of the system’s energy and
temperature in NVT-MD is shown in Figure 2 for amor-
phous Ti2O3. We find that the general-purpose, pretrained
GNN potential remains stable in all temperature stages in
MD and in most cases yields plausible amorphous config-
urations with well-developed short-range order as seen in
the peaks developed in the radial distribution functions.2

This generalization behavior is noteworthy because no amor-
phous or liquid structures were present in the training set
of the GNN potential and the configurations under thermal
conditions in MD simulations can stress the potential to
interatomic separations uncommon in solids.

In Figure 3, we present the predicted energy-composition
diagrams of 24 selected amorphous systems. To validate our
predictions, we computed the fully-relaxed DFT energies
for a large subset of amorphous structures.1 The agreement
between DFT and zero-shot GNN predictions in such a
diverse chemical space, both in terms of the energy values
and compositional trends, is highly encouraging.

The energies of amorphous systems are a key input to pro-
jecting performance or behavior in various applications or
synthesis. For example, the energy profile shown for Li-Si
in Figure 3 directly describes the lithiation voltage of amor-
phous silicon anodes in next-generation Li-ion batteries (Ar-

2As observed in various machine learning interatomic poten-
tials, in some simulations, the potential destabilized at short sepa-
rations. Work to mitigate this is in progress as mentioned later.
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Figure 3. Formation energies of the generated amorphous structures as a function of composition in various chemical systems as predicted
using the MD-GNN workflow. DFT calculated values are shown for compositions where the calculations converged. Energies are
referenced to the appropriate crystalline or gaseous references.

trith et al., 2018; Cubuk & Kaxiras, 2014; Onat et al., 2018;
Sivonxay et al., 2020). For metallic glass formers, such as
Fe-B alloys, energy can be input to models of glass forma-
tion (Takeuchi & Inoue, 2010). Similarly for chalcogenides,
such as Ge-Te, these energies can be useful in predicting the
behavior of phase change computer memories (Lankhorst,
2002). Energy of the amorphous phase was also shown to be
an upper limit for synthesizing metastable crystals (Aykol
et al., 2018). Many systems, such as Al-O, Ir-O or In-O,
appear in amorphous form in applications from coatings to
catalysis to semiconductors to synthetic precursors.

We estimate the mean absolute error (MAE) in the energies
of the MD-GNN generated amorphous structures by com-
paring to DFT calculations we ran for ∼10,000 of these
structures (Table 1). The overall MAE is 38 meV/atom,
which is surprisingly low given these are zero-shot predic-
tions (amorphous structures are entirely unseen) and even
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Figure 4. Distribution of energy difference between GNN and DFT
for the amorphous structures generated.



Predicting Properties of Amorphous Solids with Graph Network Potentials

Table 1. Accuracy of the MD-GNN workflow in predicting amor-
phous structure energies in various chemistries.

CHEMISTRY MAE (MEV/ATOM)

CARBIDES 40
NITRIDES 33
OXIDES 45

SULFIDES 38
PHOSPHIDES 38

BORIDES 41
SILICIDES 27

GERMANIDES 35
ANTIMONIDES 37
TELLURIDES 42
CHLORIDES 44
FLUORIDES 44

ALLOYS 41
OVERALL 38

on par with MAEs of crystal-trained-tested deep learning
potentials reported in previous studies (Chen & Ong, 2022;
Xie & Grossman, 2018) and that of the model used here.
Variation of the MAEs across chemistries is not high. On
average the MD-GNN workflow tends to slightly underesti-
mate the energies in Figure 4, which can also be observed
in individual cases shown in Figure 3, and can be corrected
with an affine correction in downstream applications.

Finally, the primary computational advantage of running our
MD workflow for amorphous materials with our GNN-based
potential is the ability to access longer simulation times
while keeping the system sizes similar to the typical ab-initio
simulations (i.e. ∼ 102 atoms). Overall, computational
gains depend on many factors (from hyperparameters to
implementation details) and lower-fidelity DFT settings may
reduce the cost of ab-initio MD to a certain extent, but
our preliminary estimates show a speed-up of around three
to four orders of magnitude is achievable with GNNs in
modeling these systems on practically accessible compute
resources.

4. Conclusion and outlook
We have shown that general-purpose E(3)-equivariant graph
neural network potentials are capable of modeling the dy-
namics and resulting physical properties of unseen complex
inorganic materials like amorphous solids in atomistic sim-
ulations. While these results are encouraging, we identify
several key directions to improve the modeling capability
of the hybrid MD-GNN system presented. First, inclusion
of long-range interactions (e.g. van der Waals effects) and
robust short-range repulsion (to avoid unphysical behavior
under thermal or high-pressure conditions where atoms can
get too close) is important for accurate modeling of certain
classes of materials. The latter can be mitigated by the in-

clusion of a repulsive parametric potential as demonstrated
recently by Musaelian et al. (2023b). Second, circumvention
of memory-restrictions of GNNs, particularly for inference
is important to tackle larger material systems while pre-
serving the accuracy, to which a solution has recently been
proposed in the literature (Musaelian et al., 2023a). We aim
to improve the presented workflow on both fronts.

Broader impact
Developments in materials science and chemistry lead to
new technologies for tackling global challenges, for example
in energy and environment. Accelerating the research on
this front with machine learning, as explored in this work,
has the potential to lead to long-term positive societal and
environmental impact.
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Schütt, K. T., Sauceda, H. E., Kindermans, P.-J.,
Tkatchenko, A., and Müller, K.-R. SchNet - a deep learn-
ing architecture for molecules and materials. J. Chem.
Phys., 148(24):241722, June 2018.

Sivonxay, E., Aykol, M., and Persson, K. A. The lithiation
process and li diffusion in amorphous SiO2 and si from
first-principles. Electrochim. Acta, 331:135344, January
2020.

Takeuchi, A. and Inoue, A. Mixing enthalpy of liquid phase
calculated by miedema’s scheme and approximated with
sub-regular solution model for assessing forming ability
of amorphous and glassy alloys. Intermetallics, 18(9):
1779–1789, September 2010.

Xie, T. and Grossman, J. C. Crystal graph convolutional neu-
ral networks for an accurate and interpretable prediction
of material properties. Phys. Rev. Lett., 120(14):145301,
April 2018.


