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Abstract

Atmospheric blocking is an atmospheric flow pat-
tern that is quasi-stationary, self-sustaining, and
long-lasting that effectively blocks the prevailing
westerly atmospheric flows. This blocking is di-
rectly linked to large-scale extreme events such
as heat waves, yet there is no confirmed study
on the precursor patterns that signal atmospheric
blocking’s evolution. In this paper, we investigate
the combination of physics, Convolutional Neu-
ral Network (CNN), and eXplainable Artificial
Intelligence (XAI) to form a scientific hypothesis:
precursor patterns of atmospheric blocking do ex-
ist. To investigate the predictability and search
for signals of the existence of precursor block-
ing patterns, we integrated the Two-Layer Quasi-
Geostrophic (QG) Model, an idealized model of
atmospheric evolution, into the training process
of CNN and predict atmospheric blocking, reach-
ing the prediction accuracy of 95%, 88%, and
72% at 1, 5, and 12 lead days, respectively. Next,
we employ XAI to highlight spatial patterns that
guide CNN’s prediction. The resulting compos-
ite patterns highlighted by XAI algorithms are
physically consistent with the composite ground-
truth observations at different lead days. This
work hypothesizes the existence of atmospheric
blocking’s precursor patterns, motivating future
fundamental research directions focusing specifi-
cally on these precursor patterns.
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1. Introduction
Although there are variations in the definition of heat waves,
they are commonly considered to be periods of exceedingly
high temperature (from 90 to 95-percentile of the daily cli-
matology) lasting for at least 2 to 6 consecutive days. A
persisting heatwave can seriously endanger human lives and
damage the environment as well as our society. In fact,
heat waves are a leading cause of many weather-related
deaths (Robinson, 2001). Tan et al. (2006) confirm the high
association between high temperature caused by heat waves
and increased daily mortality rate in Shanghai during the
heat waves in 1998 and 2003. Unfortunately, we lack a firm
understanding of how heat waves evolve. Several studies
have investigated and provided evidence for the link be-
tween atmospheric blocking and heat waves (Martius et al.,
2009; Dole et al., 2011; Bao et al., 2017; Dong et al., 2018;
Zschenderlein et al., 2020; Marengo et al., 2021; Kautz et al.,
2022). Specifically, atmospheric blocking refers to the situ-
ation where high-pressure systems remain quasi-stationary
that cover a certain region for an extended period. Due
to their persistent high pressure, these systems effectively
“block” the normal eastward atmospheric flow, which can
initiate the dynamic evolution of extreme weather events,
including heat waves and cold spells (Kautz et al., 2022).
There are several ways that the formulation of atmospheric
blocking can contribute to heat wave developments and
intensification. First, during atmospheric blocking, a high-
pressure system remains stationary for several days to weeks,
trapping air in a particular region. The air trapped causes
temperatures to soar and intensify the heat wave conditions.
Second, since atmospheric blocking “blocks” normal west-
erly atmospheric flows, it creates stagnant weather patterns.
These patterns prevent the mixing of air masses, limiting the
cooling effect from weather systems like storms, leading to
prolonged periods of high temperature. Last but not least,
normal jet stream behaviors are disrupted by the appearance
of atmospheric blocking. As a result, they have to be “de-
toured” around the blocking system. This effect leads to the
development of a “heat dome” where hot air is effectively
locked under the block, exacerbating the heating conditions.

Therefore, insights into the atmospheric patterns that initiate
the dynamical evolution of atmospheric blocking are crucial



Exploring the Existence of Atmospheric Blocking’s Precursor Patterns with Physics-Informed Explainable AI

for enhancing our understanding of heat wave dynamics and
improving the predictability of these events. However, the
physical processes of the dynamical evolution of blocking
are still poorly understood, and whether precursor patterns
of atmospheric blocking actually exist is still an open ques-
tion. Taking a step closer to this unaddressed question, in
our study, we focus on leveraging Interpretable Physics-
Informed CNN to test CNN’s predictability of atmospheric
blocking and investigate the existence of precursor patterns.

The contributions of this paper are as follows: (1) We pro-
pose the synergy between Convolutional Neural Networks
and the Two-Layer QG Model to capture potential precur-
sor patterns of atmospheric blocking. (2) We utilize XAI
techniques on trained CNN to highlight highly important
patterns for blocking prediction at different lead days. (3)
The composite highlighted patterns are physically consistent
with the composite observations. Based on these prelimi-
nary results, we formulate a hypothesis about the possible
existence of blocking’s precursor patterns.

Two-Layer QG Model is an idealized model of the mid-
latitude dynamics of Earth’s atmosphere, thus it represents
an ideal condition to analyze and search for precursor pat-
terns. Although this model is idealized, it captures the most
important features in the atmospheric dynamics such as an-
nular modes and eddy-driven jets’ behaviors. The details of
the two-layer QG model are described in Section 3.1. To
the best of our knowledge, our work is the first study to
integrate the two-layer QG model with XAI to study the
evolution of extreme heat waves and atmospheric blocking.

2. Related Works
Our physics-AI synergistic approach is greatly inspired by
the successes of many prior works in applying Neural Net-
works and eXplainable Artificial Intelligence (XAI) frame-
works for scientific discoveries in Earth and Atmospheric
Science. Tom et al. (2020) is a notable work that used
Layer-wise Relevance Propagation and Backward Optimiza-
tion with fully-connected Neural Networks to predict ENSO
phases. The composite detected patterns outputted by XAI
frameworks agree with the composite observations, validat-
ing the reliability and robustness of XAI and Deep Learning
in Geoscience research. Many other works also achieved
physically consistent results in various geoscience topics
such as wildfire prediction (Kondylatos et al., 2022), climate
warming slowdowns (Labe & Barnes, 2022), Madden-Julian
Oscillation (Martin et al., 2021; Delaunay & Christensen,
2022), forced change detection (Barnes et al., 2020; Rader
et al., 2022) and extreme precipitation (Davenport & Diff-
enbaugh, 2021). However, previous studies primarily con-
centrated on assessing the credibility of XAI by contrasting
their findings with known patterns. Therefore, the integra-
tion of physical models with ML frameworks to investigate

and formulate hypotheses about unknown phenomena was
overlooked. Nevertheless, the achievements demonstrated
in existing research lay a strong foundation for us to delve
into the collaborative approach between Two-Layer QG
Model and XAI, thereby uncovering potential precursor
patterns associated with atmospheric blocking.

3. Physical Model and Data
3.1. Two-layer Quasi-Geostrophic model

Two-Layer QG model is an idealized physical model of
the mid-latitude dynamics of the Earth’s atmosphere and is
commonly used to investigate large-scale atmospheric phe-
nomena such as atmospheric blocking, jet stream dynamics,
and wave propagation. This model consists of two horizon-
tally homogeneous layers of fluid, with each layer having
different density and temperature characteristics. The layers
are separated by a boundary layer, which acts as an interface
between the two layers. This interface layer initially has
some equilibrium slope, as shown in Figure 1. In this model,
the upper layer is assumed to have a lower density than the
lower layer, and both layers have a constant depth.

Figure 1. Equilibrium slope of the upper and lower layer, where
θ and Q represent the potential temperature and the zonal-mean
potential vorticity, respectively (Lutsko, 2018).

The Two-Layer QG model for Potential Vorticity (QGPV)
is an extension of the standard Two-layer QG model that
incorporates the effect of Potential Vorticity into the model.
Potential vorticity is a conserved quantity in the atmosphere
that is related to the rotation of air masses, and it is an
important quantity for understanding atmospheric dynamics.
The partial differential equations for the upper and lower
layers are:

∂Qk

∂t
+ J(ψk, Qk) = − 1

τd
(−1)k(ψ1 − ψ2 − ψR)

− 1

τf
δk,2∇2ψk (1)

Considering k = 1 denotes the upper layer and k = 2
denotes the lower layer, Qk is the Potential Vorticity, ψk is
the stream function, and ψR is the equilibrium slope in each
corresponding layer. ψR is selected so that the entire system
represented by this model is baroclinically unstable.
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Figure 2. Composite observations of Quasi-Geostrophic Potential Vorticity snapshots at various lead days prior to atmospheric blocking
events.

3.2. Data

Using the Two-Layer QG model, we generate multiple in-
dependent Quasi-Geostrophic Potential Vorticity dynami-
cal sequences. Among these sequences, 7079 independent
blocking cases are manually identified. The blocking cases
are formatted as 40-day sequences of Quasi-Geostrophic
Potential Vorticity (QGPV) snapshots where atmospheric
blocking events first occur on 20th snapshot in each se-
quence. The composite QGPV observations, which are
simply the 2D average of all QGPV snapshots, of several
different lead days prior to the first occurrence of blocking
can be visualized in Figure 2.

In addition to positive cases, we also include 66856 non-
blocking cases. These non-blocking cases are selected such
that no atmospheric blocking exists within the 120-day win-
dow of each case. In summary, 7079 positive snapshots
(blocking) and 66856 negative snapshots (non-blocking)
are randomly split into train/validation/test sets with the
80%-10%-10% ratio to train the CNN in our study.

4. Training Pipeline
4.1. Convolutional Neural Network

Our model consists of 3 main convolutional blocks as spa-
tial extractors followed by a fully-connect network as the
classifier. Each convolutional block consists of 3 layers:
5× 5 convolutional kernels, tanh activation layer, and 2D
Average Pooling layer. These 3 convolutional blocks are

responsible for learning the most relevant spatial feature in
a hierarchical manner. The extracted feature maps outputted
by these layers are then learned by a fully-connected neu-
ral network consisting of two stacked layers with 84 and 2
neurons, respectively. In the final layer, we use the softmax
activation function to convert the outputs into a probabil-
ity distribution. The final output of the whole CNN model
is two neurons representing the probability of a blocking
event pblocking and the probability of a non-blocking event
pnonblocking, which is technically a classification problem.
If pblocking > 0.5, the CNN predicts the future event to be
a blocking event (Class 1); otherwise, the prediction is a
non-blocking event (Class 0).

The hyperparameters are reported in Table 1. To train the
model, we used a single NVIDIA Tesla V100-PCIE-16GB,
accessed via the Purdue Gilbreth High-Performance Com-
puting Clusters.

Hyperparameters Value
Total Epochs 100

Batch size 256
Optimizer SGD

Learning rate 10−2

Patience on plateau 10
Learning rate decay factor 0.2

Momentum 0.9

Table 1. Training Hyperparameters
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Figure 3. CNN Model Architecture with input as a single-channel QGPV snapshot preceding blocking event. The input snapshot is
normalized between -1 and 1. The outputs are two nodes representing probabilities of blocking and non-blocking events, respectively.

4.2. Physical Interpretation with XAI

We freeze CNN’s weights and deploy the XGradCAM
(aXiom-based Gradient-weighted Class Activation Map-
ping) (Fu et al., 2020), an improved version of Grad-CAM
(Selvaraju et al., 2017), to highlight specific patterns CNN
used for blocking event predictions. The physical con-
sistency of XAI’s outputs is shown and discussed in Sec-
tion 5.2.

Suppose the last convolutional layer of the CNN is A with
K feature maps A1, A2, ..., AK (depth = K). The proce-
dure of the Grad-CAM algorithm is as follows:

1. A snapshot X is input to the CNN, and the final predic-
tion is class c (“blocking” or “non-blocking”).

2. Suppose yc is the class score of predicted class c and
Z is the number of pixels in Ak. Grad-CAM computes
the gradients of yc with respect to each pixel in the
final convolutional feature maps: ∂yc

∂Ak

3. The weight representing the degree of contribution to
the final prediction c of feature map kth in A is:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
(this is Global Average Pooling)

(2)

4. Compute coarse weighted gradient activation map us-
ing weights αc

k:

Lc
coarse = ReLU(

∑
k

αc
kA

k) (3)

The main purpose of ReLU is to highlight only the
features that contribute positively to CNN’s predictions,
suppressing features with negative contributions.

5. Since the resolution of the final map Ak is much
smaller than the original input X due to the feature
extraction mechanism of convolutional layers, Grad-
CAM interpolates Lc to the size of X:

Lc
final = bilinear(Lc

coarse, X) (4)

One drawback of Grad-CAM class algorithms is the coarser
resolution of interpreted patterns without fine-grain details.
However, one advantage is that the heatmap is much less
noisy, facilitating straightforward verification of the CNN’s
physical consistency.

To implement XGrad-CAM for the discovery of atmospheric
blocking patterns, we use the Torch-CAM package (Fernan-
dez, 2020).

5. Experimental Results
5.1. Predictability of Atmospheric Blocking

Figure 4. CNN’s atmospheric blocking predictability by Number
of Lead Days, measured in True Positive Rate and True Negative
Rate. The predictability decreases with longer Lead days.

The initial stage in hypothesizing the presence of precursor
patterns for atmospheric blocking involves investigating the
model’s predictability. If the model’s blocking predictability
is high, it signals the utilization of some precursor patterns
within the model.

Figure 4 shows the CNN’s predictability of blocking events
for different lead days. At 1 lead day, CNN correctly pre-
dicts 95% of all blocking events and 98% of non-blocking
events. Most significantly, its True Positive Rate remains
above 75% even at 12 lead days. The high predictability of
CNN based on a single input QGPV snapshot indicates the
existence of some underlying precursor patterns. To further
ensure that these patterns are signals rather than noise, we
use XAI to investigate their physical fidelity.
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Figure 5. Composite Precursor Patterns Detected by XGrad-CAM and Ground-Truth Composite Patterns at 1, 5, and 12 lead days (each
row from top to bottom order). For each lead day, there are 4 graphs from left to right: (1) Composite Pattern highlighted by XGrad-CAM.
The brightness indicates a higher relevance to blockings; (2) Ground-Truth Composite (GT) QGPV Pattern of True Positive Cases; (3) GT
QGPV Pattern of False Negative Cases; and (4) GT QGPV Pattern of False Positive Cases.

5.2. Physical Consistency of Precursor Patterns

A pattern, in the context of our study, refers to a clustered
spatial configuration that exhibits visual distinctiveness from
the background (for e.g: very bright or very dark block of
pixels). We use XGrad-CAM to detect spatial QGPV pat-
terns that CNN leverages for blocking predictions. Examin-
ing whether these patterns are spatially coherent with our
Earth system understanding indicates whether such patterns
are signals rather than noise. We compare the compos-
ite XAI-detected patterns with the composite ground-truth
observations. The k-lead-day composite pattern is simply
defined as the average of all QGPV snapshots that precede
atmospheric blocking by k day(s):

Mk
composite =

1

N

∑
allM

Mk
i

The motivation for using composite instead of case-by-case
patterns is that case-by-case precursor patterns are unknown
and thus cannot be validated. On the other hand, composite
patterns, shown in Figure 5, reflect our current knowledge of
where precursor patterns of atmospheric blocking generally
form. For the patterns to be considered physically consistent,
there are 3 pattern-matching criteria that need to be met:

1. Composite XAI-explained precursor patterns should
reflect at least an overlapping area with Composite
Ground Truth patterns True Positives cases.

2. Composite Ground Truth patterns of False Negative
cases should show no patterns (random noise), explain-
ing why CNN fails to predict blocking events.

3. Composite XAI-explained precursor pattern should
have at least one overlap with Ground-Truth Composite
patterns of False Positive cases, explaining the source
of confusion for false positive predictions.

As shown in Figure 5, XAI-detected composite precursor
patterns, highlighted in bright clustered pixels, exhibit a
high degree of overlapping patterns with the GT compos-
ites of True Positive cases and of False Positive cases at
all lead days, satisfying criteria (1) and (3). Furthermore,
the GT composite of False Negative cases displays random
noises without any clear pattern (criteria (2)), which can be
the cause of CNN’s incorrect prediction as non-blocking
events. The satisfaction of the 3 aforementioned criteria
validates the physical consistency of detected precursor pat-
terns, supporting our hypothesis that precursor patterns of
atmospheric blocking do exist.

6. Conclusions and Future Work
In this paper, we have presented a synergistic approach
between Two-Layer Quasi-Geostrophic Model and Explain-
able Convolutional Neural Network to form a hypothesis
regarding the existence of atmospheric blocking’s precursor
patterns. The two-Layer QG model represents an ideal-
ized condition to extract and capture the most important
signals for atmospheric blocking, while CNN is trained to
capture such precursor patterns. The high performance of
CNN indicates the presence of precursor patterns, while the
composite patterns detected by XAI validate the physical
consistency of such patterns. These two layers of valida-
tion provide a ground for the hypothesis that atmospheric
blocking precursor patterns do exist.

In future work, we will develop causal inference models to
further identify the causal relationship between such precur-
sor patterns and blocking events. Based on the case-by-case
patterns detected in this study, we will also focus on funda-
mental studies to derive the PDE governing the dynamical
evolution of heatwaves, which is strongly linked to atmo-
spheric blocking.
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Broader impact
This paper employs a synergistic approach by integrating an
idealized physical model and Explainable Machine Learn-
ing (XAI) to explore the existence of precursor patterns
of blocking, taking a step closer to an open question in
Earth and Atmospheric Science: do precursor patterns of
blocking exist? This hypothesis about the existence of such
patterns serves as a foundational contribution in guiding fu-
ture research directions on dynamic evolution of large-scale
extreme weather events, such as heatwaves. Such studies
will improve our understanding of how heatwaves evolve,
allowing early warning for informed decision-making that
can save lives and minimize societal costs. Furthermore, the
results from this paper are a proof of concept that Physics-
Informed Explainable Machine Learning can be efficiently
applied to form novel hypotheses, accelerating research in
the field of Earth and Atmospheric Science.
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