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Abstract
This paper proposes a physics-informed neural
operator (PINO) framework to solve a system
of coupled forward-backward partial differential
equations (PDEs) arising from mean field games
(MFGs). The MFG system incorporates a forward
PDE to model the propagation of population dy-
namics and a backward PDE for a representative
agent’s optimal control. The PINO is developed
to tackle the forward PDE efficiently, particularly
when the initial population density varies. A learn-
ing algorithm is devised and its performance is
evaluated on one application domain, which is
autonomous driving velocity control. The PINO
exhibits both memory efficiency and generaliza-
tion capabilities, compared to physics-informed
neural networks (PINN).

1. INTRODUCTION
In contrast to numerical solvers for partial differential equa-
tions (PDEs), recent years have seen a growing trend of
using neural networks (NN) to approximate PDE solutions
because of its grid-free scheme (Raissi et al., 2019; Di et al.,
2023), which, however, requires a large amount of data
samples to train. Physics informed neural networks (PINN)
have demonstrated their data-efficiency in training physics
uninformed neural networks (PUNN) to solve PDEs (Shi
et al., 2021). However, one shortcoming is that, a new
NN has to be re-trained every time when the input initial
conditions vary. It thus lacks generalization capability to
a family of PDEs differing only in initial conditions. To
tackle such a challenge, Fourier neural operator (FNO) is
developed to take in various initial conditions to train an NN
that could predict PDE outputs with different conditions (Li
et al., 2020; Thodi et al., 2023). The rationale is to propa-
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gate information from initial or other boundary conditions
by projecting them into a high dimensional space using
Fourier transformation. Physics information can be further
incorporated into FNO, which is physics informed neural
operator (PINO) (Li et al., 2021). PINO utilizes physics loss
to train the neural operator, which could further reduce the
required training data size by leveraging the knowledge of
PDE formulations.

In contrast to the classical PDE systems, here we focus on
a more difficult class of forward-backward PDE systems,
which arise from the concept of game theory, in particular,
mean field games (MFG). MFGs are micro-macro games
aiming to model the strategic interaction among a large
amount of self-interested agents who make dynamic deci-
sions (corresponding to the backward PDE), while a popula-
tion distribution is propagated to represent the state of inter-
acting individual agents (corresponding to the forward PDE)
(Lasry & Lions, 2007; Huang et al., 2006; Cardaliaguet,
2010; 2015). The equilibrium of MFG, so called mean field
equilibria (MFE), is characterized by two PDEs, they are,

1. Agent dynamic: individuals’ dynamics using optimal control,
i.e, a backward Hamilton-Jacobi-Bellman (HJB) equation, solved
backwards using dynamic programming given the terminal state;
2. Mass dynamic: system evolution arising from each individual’s
choices, i.e, a forward Fokker-Planck-Komogorov (FPK) equa-
tion, solved forward provided the initial state, representing agents’
anticipation of other agents’ choices and future system dynamics.

MFE is challenging to solve due to the coupled forward
and backward structure of these two PDE systems. There-
fore, researchers seek various machine learning methods,
including reinforcement learning (RL) (Kizilkale & Caines,
2013; Yin et al., 2014; Yang et al., 2018; Elie et al., 2020;
Perrin et al., 2021; Mguni et al., 2018; Subramanian et al.,
2022; Chen et al.) and PINN (Ruthotto et al., 2020; Car-
mona & Laurière, 2021; Germain et al., 2022; Chen et al.,
2023). Among them, PINN is one method that has shown
its efficiency in solving MFEs with continuous states and
actions.

Motivated by the MFG framework, this paper aims to tackle
a more challenging task, namely, solving a set of coupled
forward-backward PDE systems with arbitrary initial condi-
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tions. To achieve this goal, we train a PINO to approximate
the solution to a family of the coupled PDE system with
various initial conditions.

The rest of this paper is organized as: Section 2 presents
preliminaries about the coupled PDE system and PINO.
Section 3 proposes a PINO learning framework for coupled
PDEs. Section 4 presents the solution approach. Section 5
demonstrates numerical experiments. Section 6 concludes.

2. Preliminary
2.1. Spatiotemporal Mean Field Games (ST-MFG)

Spatiotemporal MFG (ST-MFG) models a class of MFGs
defined in a spatiotemporal domain over a finite horizon.
An ST-MFG is a system of partial differential equations
comprising the forward FPK and backward HJB equations.
Mathematically, we have the following PDEs for ST-MFG:

[ST-MFG]∀(x, t) ∈ X × T
(FPK) ρt + (ρ · u)x = 0, (1)

ρ(x, 0) ≡ ρ0, (2)
(HJB) Vt +min

u
{f(u, ρ) + uVx} = 0, (3)

V (x, T ) ≡ V T . (4)

We now explain the details in the PDE system.

Definition 2.1. ST-MFG. A population of agents navi-
gate a space domain X with a finite planning horizon
T = [0, T ] , T ∈ [0,∞). At time t ∈ T , a generic agent
selects continuous-time-space decision u(x, t) at position
x ∈ X . The decision triggers the evolution of population
density ρ(x, t) over the spatiotemporal domain. The generic
agent aims to minimize the total cost arising from the popu-
lation density, indicating a congestion effect.

FPK (Equ. 1 and 2). ρ(x, t),∀(x, t) ∈ X × T is the pop-
ulation density of all agents in the system (i.e., mean-field
state). ρt, ρx are partial derivatives of ρ(x, t) with respect to
t, x, respectively. ρ0 denotes the initial population density
over the space domain X . The FPK equation captures the
population dynamics starting from the initial density.

HJB (Equ. 3 and 4). The HJB equation depicts the optimal
control of a generic agent. We specify each element in the
optimal control problem as: State (x, t) is the agent’s posi-
tion at time t. (x, t) ∈ X ×T . Action u(x, t) is the velocity
of the agent at position x at time t. The optimal velocity
evolves as time progresses. Cost f(u, ρ) is the congestion
cost depending on agents’ action u and population density ρ.
Value function V (x, t) is the minimum cost of the generic
agent starting from position x at time t. Vt, Vx are partial
derivatives of V (x, t) with respect to t, x, respectively. V T

denotes the terminal cost.

Definition 2.2. Mean Field Equilibrium (MFE). In an

ST-MFG, (u∗(x, t), ρ∗(x, t)),∀(x, t) ∈ X × T is called
an MFE if following conditions hold: (1) ρ∗t + (ρ∗ ·
u∗)x = 0; (2) V ∗

t + u∗V ∗
x + f(u∗, ρ∗) = 0; (3) u∗ =

argminp{f(p, ρ) + pVx}. In this work, we adopt a neural
operator to find MFE.

2.2. Physics-Informed Neural Operator (PINO)

The physics-informed neural operator (PINO) is proposed to
solve PDEs with high computational speed (Li et al., 2021).
The PINO utilizes physics in training a Fourier neural op-
erator (Li et al., 2020), also referred to as FNO. Compared
to traditional physics-informed neural networks (PINNs),
PINO has the ability to propagate information from ini-
tial or other boundary conditions by projecting boundary
conditions into a high dimensional space using Fourier trans-
formation in the FNO. This enables the development of a
scalable learning framework for solving ST-MFG with var-
ious initial population densities, eliminating the need to
retrain multiple PINNs

3. Learning ST-MFG via PINO

Figure 1. Scalable Learning Framework for ST-MFG

In this section, we introduce a scalable learning framework
where a PINO effectively captures population dynamics,
which are determined by various initial densities and the op-
timal control in an ST-MFG. Fig. 1 illustrates the workflow
of our proposed framework. The PINO module utilizes a
Fourier neural operator ρ-FNO to represent population den-
sity ρ0−T . The ρ-FNO is updated using a residual defined
by the physical rule (FPK) that captures the relationship
between population evolution and velocity control. The op-
timal velocity u0−T is computed by the HJB equation given
the population density ρ0−T . These two modules internally
depend on each other. We now introduce them separately.

3.1. PINO module for FPK equation

Fig. 2 illustrates the architecture of PINO. In the context of
our problem, we feed the neural operator with input fields
ρ0 over the space domain X , which represents the initial
density in ST-MFG. The operator processes this input and
produces the output, which corresponds to the population
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density over a spatiotemporal domain ρ0−T . The ρ-FNO
consists of N Fourier layers. Each Fourier layer transforms
information through two processes: the Fourier transforma-
tion F → l → F−1 and the linear transformation l′. The
output resulting from these two transformations is subse-
quently fed into a nonlinear activation function σ to produce
the input for the next Fourier layer.

Figure 2. PINO Architecture

The training of ρ-FNO is guided by the residual (marked in
red) determined by physical rules of population dynamics.
Mathematically, the residual rθ is calculated as:

rθ =

∑
ρ0∈ρD LFPK(ρ0,Gθ(ρ0))

|ρD|
, (5)

where, the set ρD contains various initial densities.
LFPK(ρ0,Gθ) is the physics loss, which is calculated as:

LFPK = α||Gθ|t=0 − ρ0||
2 + β||∂Gθ

∂t
+

∂(Gθ · u)
∂x

||2. (6)

The first term in the physics loss quantifies the difference
between the output of the operator at time 0 and the initial
density. The second term evaluates the physical discrepancy
based on Equ. 1. The weight parameters α and β are used to
adjust the relative importance of these terms. The optimal
control u is obtained from the agent control module.

3.2. HJB module

We solve the HJB equation (Equ. 3) to determine the optimal
velocity given the population dynamics. Numerical methods
commonly employed for solving the HJB equation include
backward induction (Perrin et al., 2021), the Newton method
(Huang et al., 2020), and variational inequality (Huang et al.,
2021). Learning-based methods, such as RL (Guo et al.,
2019; Perrin et al., 2020) and PIDL (Chen et al., 2023), can
also be used for solving the HJB equation. In this work, we
adopt backward induction since the dynamics of the agents
and the cost functions are known in the MFG system.

4. Solution Approach
In this section, we develop a learning algorithm (Alg. 1)
based on the proposed scalable learning framework. In

Alg. 1, we first initialize the neural operator Gθ(0) , param-
eterized by θ(0). During the ith iteration of the training
process, we first sample a batch of initial population densi-
ties ρ0. We use each ρ0 to generate the population density
over the entire spatiotemporal domain ρ0−T . Given ρ0−T ,
we perform backward induction (Lines 6-9) to calculate the
optimal speed u

(i)
0−T . We then update the parameter θ of

the neural operator according to the residual. We check the
following convergence conditions for the population density
ρ0−T obtained by Gθ(ρ0):∑

ρ0∈ρD |Gθ(i)(ρ0)− Gθ(i−1)(ρ0)|
|ρD| < ϵρ (7)

The training process moves on to the next iteration till the
convergence condition holds.

Algorithm 1 PINO-MFG

1: Initialization: ρ-FNO: Gθ(0) ;
2: for i← 0 to I do
3: Sample a batch of initial population densities ρ0 from

the set ρD of density distribution;
4: Generate ρ

(i)
0−T using the neural operator Gθ(i)(ρ0)

corresponding to each ρ0 in the batch;
5: for each ρ

(i)
0−T generated by ρ-FNO do

6: for t← T to 1 do
7: u

(i)
t−1 ← argminu{f(u, ρ) + uVx(t, x)};

8: Update value function using u
(i)
t−1 according to

the HJB equation.
9: end for

10: Obtain u
(i)
0−T and calculate u

(i)
x ;

11: end for
12: Obtain residual rθ(i) according to Equ. 5 and 6;
13: Update the neural operator and obtain Gθ(i+1) ;
14: Check convergence (Equ. 7).
15: end for
16: Output ρ0−T

We also try two PINN-based algorithms (Chen et al., 2023)
for ST-MFGs. One is a joint RL and PIDL algorithm, which
iteratively solves HJB using the actor-critic method, and
FPK using a PINN. The other is a pure PIDL algorithm that
iteratively solves HJB and FPK using two PINNs. We refer
these baseline algorithms as “RL-PIDL” and “Pure-PIDL”,
respectively. Note that PINN has difficulty propagating
information from initial conditions (Li et al., 2021), RL-
PIDL and Pure-PIDL have to assign and retrain new NNs to
handle various initial population densities. In contrast, our
proposed PINO framework does not encounter the memory
and efficiency issues faced by the baselines.

5. Experiment
In this section, we apply the proposed algorithm to au-
tonomous driving velocity control problem. We first intro-
duce the MFG system for autonomous driving: A population
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of autonomous vehicles (AVs) navigate a ring road (Fig. 3).
At time t, a generic AV selects u(x, t) at position x. The
speed choice triggers the evolution of population density
over the ring road. The generic AV aims to minimize the
total cost. The length of ring road is 1. It means positions
x = 0 and x = 1 are the same. AVs move along the ring
road until time T . We assume AVs have no preference for
their locations at time T , i.e. V (x, T ) = 0,∀x ∈ [0, 1].

Figure 3. Autonomous Driving
Fig. 4 illustrates the initial conditions ρ(x, 0) sampled from
the set ρD. The initial density ρ(x, 0) represents the dis-
tribution of the AV population over the ring road at time
0. The set ρD comprises density curves with a bell shape:

ρ̂(x) = a − (a − b)e
− (x−0.5)2

δ2 , a < b and an inverted bell shape:

ρ̂(x) = a − (a − b)e
− (x−0.5)2

δ2 , a > b. These density curves are
parameterized by a, b, and δ, where a, b ∼ Uniform[0.2, 0.6]

and δ ∼ Uniform[0.1, 0.2].
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Figure 4. Sample Initial Conditions ρ(x, 0)

Fig. 5 demonstrates the performance of the algorithm in
solving ST-MFG. The x-axis represents the iteration index
during training. Fig. 5a displays the convergence gap, calcu-
lated as |ρ(i) − ρ(i−1)|. Fig. 5b displays the 1-Wasserstein
distance (W1-distance), which measures the closeness (Lau-
riere et al., 2022) between our results and the MFE (mean
field equilibrium) obtained by numerical methods, repre-
sented as |ρ(i) − ρ∗|. Our proposed algorithm converges to
the MFE after 200 iterations.
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Figure 5. Algorithm Performance.

Fig. 6 demonstrates the population density ρ∗ at MFE in two

different ST-MFGs, which are referred as ST-MFG 1 and 2.
The cost function in ST-MFG 1 is r(u, ρ) = 1

2u
2 − u+ uρ.

In ST-MFG 1, the population of AVs incurs a penalty if
they select the same velocity control, whereas in ST-MFG 2,
they do not. The x-axis represents position x, and the y-axis
represents time t. Fig. 6a and 6c have an initial density
with an inverted bell shape. Fig. 6b and 6d have an initial
density with a bell shape. The cost function in ST-MFG 2 is
r(u, ρ) = 1

2 (1− ρ− u)2. Compared to the equilibrium ρ∗

in ST-MFG 2, the population density in ST-MFG 1 quickly
dissipates and no wave forms.

(a) ST-MFG 1, a:0.5, b:0.2, err: 0.016 (b) ST-MFG 1, a:0.2, b:0.5, err: 0.010

(c) ST-MFG 2, a:0.5, b:0.2, err: 0.018 (d) ST-MFG 2, a:0.2, b:0.5, err: 0.013

Figure 6. Population Density ρ∗ at MFE.

In Table 1, we make a comparison of different learning meth-
ods. The computational time refers to the total training time
(unit: s) required for solving ST-MFGs with various initial
conditions. The PINO-based algorithm demonstrates a re-
duced need for neural networks (NNs) and shorter training
time compared to PINN-based algorithms.

PINO RL-PIDL Pure-PIDL
Memory

(Number of NNs) 1 48 32

Time (s) ST-MFG 1 48.57 1544.96 687.44
ST-MFG 2 46.43 1384.48 313.36

Table 1. Comparison of Existing Learning Methods

6. Conclusion
This work presents a scalable learning framework for
solving coupled forward-backward PDE systems using a
physics-informed neural operator (PINO). PINO allows for
efficient training of the forward PDE with varying initial
conditions. Compared to traditional physics-informed neu-
ral networks (PINNs), our proposed framework overcomes
memory and efficiency limitations. We also demonstrate the
efficiency of this method on a numerical example motivated
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by optimal autonomous driving control. The PINO-based
framework offers a memory, data efficient approach for solv-
ing complex PDE systems with generalizability to similar
PDE systems differing only in boundary conditions.

Broader impact
This work is motivated by the computational challenge faced
by the mean field game (MFG). MFGs have gained increas-
ing popularity in recent years in finance, economics, and
engineering, due to its power to model the strategic interac-
tions among a large number of agents in multi-agent systems.
The equilibria associated with MFGs, aka, mean field equi-
libra (MFE), are challenging to solve due to its coupled
forward and backward PDE structure. That is why compu-
tational methods based on machine learning have gained
momentum. The PINO-based learning method developed in
this study empowers the generalization of the trained neural
networks to various initial conditions, which holds the po-
tential to solve large-scale MFGs, in particular graph-based
applications, including but not limited to autonomous vehi-
cle driving on road networks, pedestrian or crowd dynamics,
vehicle fleet network management, internet packet routing,
social opinion dynamics, and epidemiology.
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