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Abstract

Statistical physics has played a pivotal role in the
formulation of neural networks and understanding
their behaviour. However, the effort to utilize the
physical principle in the transformer architecture
is still underexplored. In our work, we first show
that spectral feature learning with self-attention
is prone to instability. Inspired from the Ising
model, we then propose a transformer based net-
work using a adjacently coupled spectral attention
and demonstrate its effectiveness in learning the
spectral mapping from RGB images. We further
analyse its stability using the theory of Lipschitz
constant. The method is evaluated and compared
with different state-of-the-art methods on multiple
standard datasets.

1. Introduction
Neural networks are well known to exhibit properties that
are commonly derived from statistical physics. This is
clearly because of the large population of neurons in an
network that certainly follows the fundamental physical
laws. While some works have highlighted the underlying
behaviour of neural nets in terms of these principles (Huang,
2023), some others explicitly utilize the principles from dif-
ferent physics domains and apply them to machine learning
(Raissi et al., 2019). In this work, we apply the idea of near-
est neighbour coupling from Ising model (Brush, 1967) and
remodel the self-attention to learn spectral reconstruction. It
is known that spectral reconstruction is an ill-posed problem
Lin & Finlayson (2020). Hyperspectral to RGB projection
can be thought as projecting the hyperspectral image vector
along the spectral response space. This in turn results in the
loss of the image vector lying in the null space of spectral
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response, and therefore the exact inverse mapping cannot
be performed without the unknown null space vector. In
recent years, transformers gained popularity for application
in computer vision problems. They found applications in
low level vision problems like image super-resolution Lu
et al. (2022); Sinha et al. (2022), image inpainting Li et al.
(2022), and so on. Self-attention is the key essence of ex-
ploiting long range dependencies in Transformers. However,
this approach to estimate the spectral attention coefficients
along spectral channels has serious limitations in spectral
recovery task. Intuitively, for a feature map with C num-
ber of channels, the corresponding C × C shaped attention
matrix uses a scalar value to correlate the spatial variation
between two channels. Furthermore, the Lipschitz constant
of self-attention layer is proportional to the variance in input
that results into larger sensitivity factor (Kim et al. (2021)).
To alleviate this issue, we present a spectral attention layer
that is relatively more stable than self-spectral attention. We
further utilize the theory of Lipschitz constant to mathemat-
ically show the stability under trivial assumptions.
Notations X and Y are input and output feature maps from
the proposed self-attention model. Wf ∗X (or alternately
f(X)) is used for convolution operation by kernel W , and
op(Wf )X signifies its equivalent matrix-vector multiplica-
tion using operator matrix of W . Xc and Yc are the cth

input and output feature maps, respectively. Additionally,
fF
c and fB

c are used to denote convolution operation on
cth channel in the forward and backward channel coupling,
respectively. For studying Lipschitz stability, Ji,j is the
Lipschitz constant for ith channel to jth channel. Alter-
nately, if jth channel feature map is perturbed by a certain
amount, the change in ith channel feature map is Ji,j times
the perturbation on jth channel.

2. Proposed Method
Figure 1 shows the overall end-to-end architecture. It primar-
ily consists of Multi-Scale Spatio-Spectral Feature Block
(MS-SSF) followed by a pointwise convolution, and a resid-
ual connection is used to avoid the vanishing gradient prob-
lems. MS-SSF block learns spatial and spectral dependen-
cies at different scales. The pointwise convolution scales the
number of channels in intermediate layers without changing
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Figure 1. A: End-to-end transformer network. B: MSSSFB-C: Multi-Scale Spatio Spectral Feature Block with C number of input channels.
C: Transformer block with C number of input channels. D: Adjacent Channel Coupler (ACC). E: Architecture of spectral attention.

the spatial context. Figure 1B shows the architecture of
the MS-SSF block that follows U-Net Ronneberger et al.
(2015) like architecture. MS-SSF block uses a separable
convolution layer for feature transformation, and a trans-
former block to learn spatial-spectral feature dependencies.
The transformer block, as shown in Figure 1C, uses resid-
ual architecture and batch normalization for training sta-
bility. While the transformers in NLP tasks are inclined
towards LayerNorm, the CNN based architectures for vi-
sion problems are more batch norm friendly. Many works
have shown that batch norm outperforms layer norm for
properly chosen batch size Chen et al. (2021). Though
BatchNorm based pure self-attention suffers from instabil-
ity issues, it works reasonably well for mixed architecture.
Spatio-Spectral Transformer Attention (SSTA) is the core
attention module to learn inter-channel and spatial interac-
tions using the adjacently coupled spectral self-attention and
non-local second-order self-attention (Appendix A.1) and
the resulting attention coefficient is governed by the spectral
features in the majority.

2.1. Adjacently Coupled Spectral Attention

((a)) ((b))

Figure 2. (a) 31x31 shaped Spectral attention map of MST (Cai
et al., 2022a) for 31 channels. (b) Cosine similarity of first channel
to other 30 channels.

Before we discuss the adjacently coupled spectral attention,
we intuitively look at the the spectral attention map of MST
((Cai et al., 2022a)) (shown in Figure 2(a)) in which every
row i depicts the global dependency of channel i on other
channels. Figure 2(b) shows the spectral similarity of the
first channel to the others in a hyperspectral image. While
the spectral dependency is obvious to decrease on the farther
channels, same could not be observed in the spectral map
learnt by MST (Cai et al., 2022a). This can make any given
channel more susceptible to the perturbation in the farther
channel, which is contradicting to the scientific correlation
of the spectral channels. To mitigate the physical incoher-
ence in learning the global spectral dependency, we came up
with the idea of adjacent channel coupling that allows the
spectral dependency to be modulated through propagation
between the two given channels. The detailed analysis of
the proposed attention is provided in the section 2.1.1.

2.1.1. LIPSCHITZ STABILITY

The motivation to propose coupled spectral attention is
to overcome the limitations of using spectral wise self-
attention for spectral dependencies. Firstly, To apply
self-attention along the spectral dimension on the fea-
ture map X ∈ RH×W×C shaped feature map, the corre-
sponding spectral attention coefficient using estimated key
K ∈ RC×HW and query Q ∈ RC×HW is computed as
Aij =

∑HW−1
k=0 Qi,kK

T
k,j . It squeezes the spatio-spectral

context between two channels to a single scalar value caus-
ing the information loss. Second,the Lipschitz constant of
self-attention is bounded by the variance of the input result-
ing in larger sensitivity Kim et al. (2021). To support the
argument, Corollary 2.1 shows that the L2 norm of diagonal
elements of Jacobian is proportional to the squared dynamic
range of the input.
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Corollary 2.1. Let m and M be the minimum and maxi-
mum values of X, and WQ and WK be the query and key
weights in self-attention.The L2 norm of diagonal elements
of Jacobian in self-attention network is given by,

∥Ji,i∥2 ≤
∥∥WKWQ

∥∥
2

4
+
∥∥WKWQ

∥∥
2

(M −m)2

4
+ 1,

(1)
with equality if (softmax(XWQ(XWK)T )i,i = 1 and
Xi = 1.

Proof. See Appendix A.2.

To combat the sensitivity issue, we use the Ising model
(Brush, 1967) as a reference taht is commonly used to de-
scribe the phenomenon of ferromagnetism. The total energy
of system in Ising model is a function of spin states coupled
with their nearest neighbour and an external field trying to
align these spin states. In other words,

−E(si) = J
∑
<i,j>

sisj + µBB
∑
i

si (2)

−E(si) = f1(si, sj:j∈<i,j>) + f2(B, si) (3)

In equation 2, J is the coupling constant, si is the spin vari-
able (hidden state), < i, j > indicates nearest neighbour,
and B is the external magnetic field (input). Equation 3 rep-
resents the Ising model in the form of generalised functions.
Following this, we formulate the adjacent coupling in spec-
tral unit. The channel wise output can be mathematically
described as,

Yc = Xc +
1

2

(
V F
c ⊙ σ(FF

c (Qc,Kc−1))

+V B
c ⊙ σ(FB

c (Qc,Kc+1))
)
,

(4)

where Fu
c (Qc,Kp) = WQ

u ∗ (Xc +WK
u ∗Xp) and V u

c =
fF
u (Xc), for u = {F,B} and p is c−1 for forward coupling

(F ) and c + 1 for backward (B) resulting in bidirectional
global propagation. Fu

c (Qc,Kp) and V u
c are called non-

linear cross-attention and Value embedding, respectively. ⊙
refers to elementwise-multiplication. For necessary deriva-
tions, we further simplify the gating vector Fu as,

Fu
c (Qc,Kp) = WQ

u ∗ (Xc +WK
u ∗Xp)

= WQ
u ∗Xc +WQ

u ∗WK
u ∗Xp

= gu(Xc) + hu(Xp)

(5)

Substituting 5 in 4, we get,

Yc = Xc +
1

2

(
fF
c (Xc)⊙ (σ(gFc (Xc) + hF

c (Yc−1)))

+fB
c (Xc)⊙ (σ(gBc (Xc) + hB

c (Yc+1)))
) (6)

Unlike self-attention, coupled channels in equation 6 only
allows information to propagate through interaction between
adjacent feature maps. Additionally, we use non-linear
function in the place of correlation based spin coupling to
simulate the spectral interaction. Equation 6 can be rewritten
as matrix operation on the vectorized mappings Xc, Yc ∈
RHW as,

Yc=Xc+
1

2

(
op(WfF

c
)Xc⊙(σ(op(WgF

c
)Xc+op(WhF

c
)Yc−1))

+ op(WfB
c
)Xc⊙(σ(op(WgB

c
)Xc+op(WhB

c
)Yc+1))

)
,

(7)

where the convolution, being a linear operation, is replaced
by the matrix-vector operation. op(W )X implies that ma-
trix form of convolution kernel W is operated on the vector-
ized input X .

Lemma 2.2. Let ω = e2πi/HW and W f be the convolution
kernel in the function f . Let J be the difference between
the learned kernel and its initialization and given by J =
W f − W f

0 . Also, let F be a complex matrix such that
Fij = ωij . If ϵf = 1

9 (F
TJF )0,0, then upper bound on the

L2 norm of diagonal elements of Jacobian of adjacently
coupled spectral self-attention is given by,

∥Ji,i∥2 ≤1 +
1

8

(
(1 + 9ϵf

F

i )(1 + 9ϵg
F

i )

+ (1 + 9ϵf
B

i )(1 + 9ϵg
B

i )
)√

HWmax(|M |, |m|)

+
1

2

(
(1 + 9ϵf

F

i ) + (1 + 9ϵf
B

i )
)

Proof. See Appendix A.3.

Lemma 2.3. Let the loss function for transformer network
be Lt = ρt +

γ
2 ∥wt∥22 at time t, where ρ is the data fidelity

term and γ is L2 regularisation parameter. Assume that
there N numbers of k × k convolution filters in the neural
net. The upper bound on the magnitude of Jacobian ∥Ji,j∥2
after T iterations is given by,

∥Ji,j∥2≤
( i∏
k=j+1

√
2ρT
γN

∥∥V F
k ⊙σ(FF

k (Qk,Kk−1))
∥∥
2

)∥∥∥∥ ∂Yj

∂Xj

∥∥∥∥
2

,

for i > j and,

∥Ji,j∥2 ≤
( j−1∏

k=i

√
2ρT
γN

∥∥V B
k ⊙ σ(FB

k (Qk,Kk+1))
∥∥
2

)∥∥∥∥ ∂Yj

∂Xj

∥∥∥∥
2

,

for i < j.

Proof. See Appendix A.4.
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Table 1. Quantitative comparison of different spectral reconstruction methods. The best ones are shown in bold.
Method Params (M) FLOPS (G) CAVE NTIRE2020 NTIRE2022

RMSE SAM MRAE RMSE MRAE RMSE
Bicubic - - 0.1689 34.382 0.1745 0.0506 0.2005 0.0712
HSCNN+ 4.65 266.84 0.0353 12.208 0.0684 0.0182 0.3814 0.0588
HRNet 31.70 143.51 0.0298 8.150 0.0682 0.0178 0.3476 0.0550
EDSR 2.42 142.53 0.0384 8.755 0.0707 0.0162 0.3277 0.0437
AWAN 4.04 231.29 0.0375 8.654 0.0678 0.0175 0.2500 0.0367
MST 2.45 26.29 0.0289 7.812 0.0747 0.0173 0.1772 0.0256
Ours 1.18 36.84 0.0246 7.661 0.0669 0.0158 0.1767 0.0301

Lemma 2.2 shows that the upper bound on L2 norm of the
Jacobians’s diagonal elements (Lipschitz constant for diago-
nal elements) of the model is proportional to the maximum
of absolute dynamic range. Furthermore, Lemma 2.3 de-
rives the general formulation for Lipschitz constant under
mild assumptions.

3. Experiments
3.1. Datasets

Three publicly available datasets are used for training and
performance assessment, including NTIRE 2020 Arad &
Timofte (2020), NTIRE 2022 Arad & Timofte (2022), and
CAVE Yasuma et al. (2010) datasets. The network is trained
on the training sets of NTIRE images, and evaluated on the
provided validation sets. For CAVE images, 20 out of 32
images are randomly selected for training and remaining 12
images are used to validate the performance. All of these
datasets have 31 multi-spectral bands covering the visible
spectra (400-700 nm) at an interval of 10 nm.

3.2. Performance Comparison

The proposed approach is compared with latest state-of-the-
art methods, including AWAN (Li et al. (2020)), MST (Cai
et al. (2022a)), HSCNN+ (Shi et al. (2018)), HRNet (Zhao
et al. (2020)), and EDSR (Lim et al. (2017)) in Table 1. For
NTIRE2020 and NTIRE2022, we compare them in terms
of Mean Relative Absolute Error (MRAE) and Root Mean
Squared Error (RMSE). Whereas, Spectral Angle Mapper
(SAM) is used for CAVE dataset instead of MRAE due
to high sensitivity of zero value pixels in spectral bands.
It is worth mentioning that our method outperforms the
State-of-the-art models with fewer parameters. However,
our approach requires relatively more number of FLOPS
since the spectralwise attention is estimated for all spatial
positions through convolution operation.

Table 2. 2-Lipschitz constant for spectral self-attention from MST
j ||J0,j ||2 ||J5,j ||2 ||J20,j ||2
0 3.894 0.0011 0.0013
5 0.050 0.428 0.0011

20 0.00043 0.0008 0.426

Table 3. 2-Lipschitz constant for Adjacent channel coupling.
j ||J0,j ||2 ||J5,j ||2 ||J20,j ||2
0 0.431 0 0
5 0 0.770 0

20 0 0 0.776

3.3. Stability Analysis

To further validate the Lemmas 2.2 and 2.3, we emperically
estimate the Lipschitz constants by perturbing a specific
channel(denoted by j in Tables 2 and 3) in the feature map.
It is to be noted that these values are estimated for RGB im-
ages with dynamic range of 255 to observe the effects more
prominently. To estimate 2-Lipschitz constants, the inputs
to the attention modules are perturbed to observe the corre-
sponding change in the output. Tables 2 and 3 show the esti-
mated Lipschitz constants for multihead-multispectral self-
attention and our method, respectively. While 2-Lipschitz
constant of diagonal Jacobian elements are found to be com-
parable, unlike multihead spectral self-attention, any pertur-
bation in a given channel is not propagated to other channels
in the feature maps of adjacently coupled feature maps. This
clearly indicates that perturbation in the spectral channel of
multihead-spectral self-attention induces instability in the
other channels too, whereas this effect is suppressed to a
large extent in channel coupled approach.

4. Conclusions
Though Transformer has been the emergent approach in
various applications, the performance and training stability
still requires to be carefully studied. Moreover, the physics
based inductive bias is yet to be explored in the context of
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vision based transformers. This work specifically focuses
on the implications of self-attention along the spectral di-
mension, and therefore proposes a modified structure with
theoretical Lipschitz constant to enhance the overall stability
of the transformer. The derived theory is also empirically
observed in the model. As a future scope, it will be worth
to find out other methods to study and evaluate the stabil-
ity of the machine learning models that are derived from
principles of statistical physics.
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5. Broader impact of the work
1. Ethical considerations: Lipschitz stability can play a role in addressing ethical concerns related to the deployment of

machine learning models. By ensuring that the model’s predictions are not overly sensitive to small changes in the
input, it helps reduce biases and unwarranted discrimination that may arise from minor variations in the input. This
promotes fairness and accountability in the use of Transformer models.

2. Attention mechanism: The Ising model’s concept of interactions between spins can inspire modifications to the
attention mechanism, allowing it to capture more nuanced dependencies and interactions between tokens. This could
potentially improve the model’s ability to understand context and capture long-range dependencies.

3. Adversarial defense: Adversarial attacks aim to manipulate inputs to mislead machine learning models. Lipschitz
stability can help in defending against such attacks by limiting the extent to which an input can be perturbed without
significantly changing the model’s output. By constraining the Lipschitz constant, the model becomes more resistant to
adversarial manipulations, thereby enhancing its security.

4. Interpretability and explainability: Lipschitz stability can contribute to the interpretability and explainability of
transformer models. When a model’s behavior is Lipschitz stable, it implies that small changes in the input space
correspond to small changes in the output space. This property enables researchers and practitioners to analyze
the model’s behavior more easily, interpret the effects of input features on the output, and provide more reliable
explanations for model predictions.
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A. Appendix
A.1. Non-local second-order self-attention

Unlike adjacently coupled spectral attention, non-local second-order self-attention (Wang et al., 2018) is used to learn global
inter-dependencies for every spatial position. The general formulation of self-attention is

Y = softmax(X)V, (8)

where V = WV X is squeezed to the dimension HW × C/2 and X is the spatial attention-map given by,

X = WXÎ(WX)T , (9)

where Î = 1
HW (I − 1

HW 1), and I and 1 are identity matrix and ones matrix, respectively. Due to quadratic complexity, the
model is trained and inferred in patches to reduce memory footprint.

A.2. Proof of Corollary 2.1

From (Kim et al., 2021),
Jij = WKWQXTP (i)(EjiX + δijX) + PijI

where WK and WQ are the weights of Key and Query respectively. P is computed as P = softmax(XWQ(XWK)T√
HW

), and

P (i) = diag(Pi:)− PT
i: Pi:.

For i = j,

Jii = WKWQXTP (i)eiiX +WKWQV ar(X) + Pii (10)

∥Jii∥2 ≤ A.(Pi,iXi − (Pi,iXi)
2) +A.V ar(X) + ∥Pii∥2 , (11)

where A =
∥∥WKWQ

∥∥
2

Observe that Pi,iXi − (Pi,iXi)
2 is concave in Pi,iXi and has maxima for Pi,iXi =

1
2 . For ∥Pi,i∥2 = 1, Xi = 0.5. Using

this in ∥Ji,i∥2,
∥Jii∥2 ≤ A

4 +A.V ar(X) + 1

A.3. Proof of Lemma 2.2

The proof is the immediate application of operator norm for convolution kernels in Long et. al. (Long & Sedghi, 2020).

In equation 6, the functions f , g and h, being 2D convolutions, can be represented using the matrix multiplication with
corresponding operator matrix (Long & Sedghi, 2020), i.e. W ∗ x def

= op(W )x.

Ji,i =
∂Yi

∂Xi

= I+
1

2

(
diag(op(WfF

i
)Xi ⊙ σ(α1)(1− σ(α1)))op(WgF

i
)

+ diag(op(WfB
i
)Xi ⊙ σ(α2)(1− σ(α2)))op(WgB

i
)
)
+

1

2

(
(op(WfF

i
))⊙ diag(σ(α1))

)
+

1

2

(
(op(WfB

i
))⊙ diag(σ(α2))

)
(12)

Here, α1 = gF (Xi) + hF (Yi−1) and α2 = gB(Xi) + hB(Yi+1). Applying the operator norm from Long et. al. (Long &
Sedghi, 2020) and taking the L2 norm to estimate the Euclidean Lipschitz constant,

∥Ji,i∥2 ≤1 +
1

8

(
(1 + 9ϵf

F

i )(1 + 9ϵg
F

i ) + (1 + 9ϵf
B

i )(1 + 9ϵg
B

i )
)√

HWmax(|M |, |m|) + 1

2

(
(1 + 9ϵf

F

i ) + (1 + 9ϵf
B

i )
)

(13)
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A.4. Proof of Lemma 2.3

Without the loss of generality, we can assume that the choice of regularization constant is such that data fidelity term in the
total loss dominates at any given step T ,

γ

2
∥wT ∥2 ≤ ρT (14)

If the maximum L2 norm of a kernel is C, then ∥wT ∥2 ≤ NC2. Substituting it in equation 14, we get,

C ≤
√

2ρT
γN

(15)

Ji,j =
∂Yi

∂Xj

=
1

2
diag(op(WfF

i
)Xi ⊙ σ(α1)(1− σ(α1)))op(WhF

i
)
∂Yi−1

∂Xj

≤ 1

2
diag(V F

i ⊙ σ(FF
i (Qi,Ki−1)))op(WhF

i
)
∂Yi−1

∂Xj

≤
( i∏

k=j+1

1

2
diag(V F

k ⊙ σ(FF
k (Qk,Kk−1)))op(WhF

k
)
) ∂Yj

∂Xj

(16)

∥Ji,j∥2 ≤
( i∏

k=j+1

1

2

∥∥V F
k ⊙ σ(FF

k (Qk,Kk−1))
∥∥
2

∥∥∥op(WhF
k
)
∥∥∥
2

)∥∥∥∥ ∂Yj

∂Xj

∥∥∥∥
2

(17)

Substituting (15) in (17), we get

∥Ji,j∥2 ≤
( i∏

k=j+1

√
2ρT
γN

∥∥V F
k ⊙ σ(FF

k (Qk,Kk−1))
∥∥
2

)∥∥∥∥ ∂Yj

∂Xj

∥∥∥∥
2

(18)

The proof of ∥Ji,j∥2, i < j follows the same approach and has similar upper bound as in (18).

((a)) RGB ((b)) AWAN ((c)) HRNet ((d)) HSCNN+ ((e)) EDSR

((f)) MST ((g)) Ours ((h)) Spectral Pro-
file

Figure 3. Illustration of residual map in the spectral band predicted by different methods. Spectral profile compares the spectral profiles
generated by different methods.
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A.5. Implementation Details

The RGB images are linearly scaled in the range of [0,1] and are fed as a batch of 64× 64 cropped images. The batch size
is set to 20, and the network is optimized using Adam optimizer with default setting of β1 = 0.9 and β2 = 0.999. The
learning is initialized to 0.0002 and subsequently reduced to 10−6 using cosine annealing for 300 epochs. Similar to Cai
et al. (2022b), data augmentation is also performed using random flipping of the cropped images to avoid overfitting. The
training is performed using Mean Relative Absolute Error (MRAE) as the loss function. The testing phase also requires
linear scaling of RGB images to [0,1]. Owing to sequential estimation, the computation requires 1.58 seconds per image on
testing dataset using single A100 GPU.

A.6. Qualitative Results

Figure 3 illustrates the residual in the predicted spectral band of wavelength at 410 nm, and the spectral profile at the centre
region of the image. It can be observed that other methods are sensitive to variation in brightness and contrast, and therefore
incur large residual in the some of regions of predicted multi-spectral bands.


