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Abstract
Unfolding is an important procedure in particle
physics experiments which corrects for detec-
tor effects and provides differential cross section
measurements that can be used for a number of
downstream tasks, such as extracting fundamen-
tal physics parameters. Traditionally, unfolding is
done by discretizing the target phase space into
a finite number of bins and is limited in the num-
ber of unfolded variables. Recently, there have
been a number of proposals to perform unbinned
unfolding with machine learning. However, none
of these methods (like most unfolding methods)
allow for simultaneously constraining (profiling)
nuisance parameters. We propose a new machine
learning-based unfolding method that results in an
unbinned differential cross section and can profile
nuisance parameters. The machine learning loss
function is the full likelihood function, based on
binned inputs at detector-level. We demonstrate
the method and show the impact on a simulated
Higgs boson cross section measurement.

1. Introduction
One of the most common analysis goals in particle and
nuclear physics is the measurement of differential cross sec-
tions. These quantities encode the rate at which a particular
process occurs as a function of certain observables of inter-
est. From measured cross sections, a number of downstream
inference tasks can be performed, including the estimation
of fundamental parameters, tuning simulations, and search-
ing for physics beyond the Standard Model. The key chal-
lenge of cross section measurements is correcting the data
for detector distortions, a process called deconvolution or
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unfolding. See Refs. (Cowan, 2002; Blobel, 2011; 2013;
Balasubramanian et al., 2019) for recent reviews on unfold-
ing and Refs. (D’Agostini, 1995; Hocker & Kartvelishvili,
1996; Schmitt, 2012) for the most widely-used unfolding
algorithms.

Until recently, all cross section measurements were per-
formed with histograms. In particular, the target spectra and
experimental observations were binned and the unfolding
problem is recast in the language of linear algebra. That
is, one would like to determine the signal strength, defined
as the ratio of the observed signal yield to the theoretical
prediction, for each bin based on the measurements from
experimental observations. This approach comes with the
limitation that the binning must be determined beforehand.
This makes it difficult to compare measurements with dif-
ferent binning. Furthermore, the optimal binning depends
on the downstream inference task.

Modern machine learning (ML) has enabled the creation of
unfolding methods that can process unbinned data (Arratia
et al., 2022). Deep generative models such as Generative Ad-
versarial Networks (GAN) (Goodfellow et al., 2014; Datta
et al., 2018; Bellagente et al., 2019) and Variational Au-
toencoders (VAE) (Kingma & Welling, 2014; Howard et al.,
2021) produce implicit models that represents the proba-
bility density of the unfolded result and allow to sample
from the probability density. Methods based on Normaliz-
ing Flows (NF) (Rezende & Mohamed, 2015; Bellagente
et al., 2020; Vandegar et al., 2021; Backes et al., 2022) allow
for both sampling and density estimation. In contrast, the
classifier-based method OmniFold Refs. (Andreassen et al.,
2020; 2021) iteratively reweights a simulated dataset. A
summary of machine learning-based unfolding methods can
be found in Ref. (Arratia et al., 2022) and recent applica-
tions of these techniques (in particular, of OmniFold) to
experimental data are presented in Refs. (H1 Collaboration,
2022a;b;c; LHCb Collaboration, 2022). While powerful,
none of these approaches can simultaneously estimate cross
sections and fit (nuisance) parameters. This can be a sig-
nificant shortcoming when the phase space region being
probed has non-trivial constraining power for systematic
uncertainties.

Unfolding methods that can also profile have been proposed.
One possibility is to treat the cross section in each region
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of particle-level phase space (i.e. in a histogram bin) as a
free parameter and then perform a likelihood fit as for any
set of parameters of interest and nuisance parameters. For
example, this is the setup of the the Simplified Template
Cross Section (STXS) (e.g. Refs. (de Florian et al., 2016;
Andersen et al., 2016; Berger et al., 2019; Amoroso et al.,
2020)) measurements for Higgs boson kinematic proper-
ties. Another possibility is Fully Bayesian Unfolding (FBU)
(Choudalakis, 2012), which samples from the posterior prob-
ability over the cross section in each bin of the particle-level
phase space and over the nuisance parameters. All of these
methods require binning.

In this paper, we propose a new machine learning-based
unfolding method that is both unbinned at particle level
and can profile, referred to as Unbinned Profiled Unfold-
ing (UPU). UPU reuses all the standard techniques used
in binned maximum likelihood unfolding and combines
them with ML methods that allow for unbinned unfolding.
Specifically, we use the binned maximum likelihood at de-
tector level as the metric to optimize the unfolding, while
the unfolding takes unbinned particle-level simulations as
inputs.

2. Unbinned Profiled Unfolding
2.1. Machine Learning Approach

UPU generalizes binned maximum likelihood unfolding to
the unbinned case. Data at detector-level are still treated
as binned in order to know the likelihood (Poisson) while
the corresopnding particle-level (pre-detector) data are un-
binned. Bin-free results are achieved by learning a function
to reweight samples from an initial simulated sample.

For particle-level features T and detector-level features
R, the main goal is to train the likelihood ratio estimator
w0 (T ), which reweights the simulated particle-level spec-
trum. In the absence of profiling, this corresponds to the
following loss function:

L =

nbins∏
i=1

Pr

ni

∣∣∣∣∣
nMC∑
j=1

w0(Tj)Ii(Rj)

 , (1)

where ni is the number of observed events in bin i, nMC is
the number of simulated events, and Ii(·) is the indicator
function that is one when · is in bin i and zero otherwise.
When w0 is parameterized as a neural network (see Sec-
tion 2.2), then the logarithm of Equation (1) is used for
training:

logL = (2)

nbins∑
i=1

ni log

nMC∑
j=1

w0(Tj)Ii(Rj)

−
nMC∑
i=1

w0(Tj)Ii(Rj)

 ,

where we have dropped constants that do not affect the
optimization. Experimental nuisance parameters modify
the predicted counts in a particular bin given the particle-
level counts. We account for these effects with a second
reweighting function:

w1(R|T, θ) = pθ(R|T )
pθ0(R|T )

, (3)

where pθ(R|T ) is the conditional probability density of R
given T with nuisance parameters θ. Importantly, w1 does
not modify the target particle level distribution. Incorporat-
ing w1 into the log likelihood results in the full loss function:

logL =

nbins∑
i=1

[
ni log

nMC∑
j=1

w0(Tj)w1(Rj |Tj , θ)Ii(Rj)


−

nMC∑
j=1

w0(Tj)w1(Rj |Tj , θ)Ii(Rj)

]
+ log p0(θ) .

(4)

Since w1 does not depend on the particle-level spectrum, it
can be estimated prior to the final fit and only the parame-
ters of w0 and the value(s) of θ are allowed to float when
optimizing Equation (4).

2.2. Machine Learning Implementation

In our subsequent case studies, the reweighting functions
w0 and w1 are parametrized with neural networks. The w0

function is only constrained to be non-negative and so we
choose it to be the exponential of a neural network.

The pre-training of w1 requires neural conditional reweight-
ing (Nachman & Thaler, 2022), as a likelihood ratio in R
conditioned on T and parameterized in θ. While there are
multiple ways of approximating conditional likelihood ra-
tios, the one we found to be the most stable for the examples
we have studied for UPU is the product approach:

w1(R|T, θ) =
(

pθ(R, T )

pθ0(R, T )

)(
pθ0(T )

pθ(T )

)
, (5)

where the two terms on the righthand side are separately es-
timated and then their product is w1. For a single feature T ,
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a likelihood ratio between samples drawn from a probability
density p and samples drawn from a probability density q
is estimated using the fact that machine learning-classifiers
approximate monotonic transformations of likelihood ratios
(see e.g. Ref. (Hastie et al., 2001; Sugiyama et al., 2012)).
In particular, we use the standard binary cross entropy loss
function

LBCE[f ] = −
∑
Y∼p

log(f(Y ))−
∑
Y∼q

log(1− f(Y )) , (6)

and then the likelihood ratio is estimated as f/(1 − f).
The last layer of the f networks are sigmoids in order to
constrain their range to be between 0 and 1. The function f
is additionally trained to be parameterized in θ by training
with pairs (Y,Θ) instead of just Y , where Θ is a random
variable corresponding to values θ sampled from a prior. We
will use a uniform prior when training the parameterized
classifiers.

All neural networks are implemented using PyTorch (Paszke
et al., 2019) and optimized with Adam (Kingma & Ba, 2014)
with a learning rate of 0.001 and consist of three hidden
layers with 50 nodes per layer. All intermediate layers
use ReLU activation functions. Each network is trained
for 10,000 epochs with early stopping using a patience of
10. The w1 training uses a batch size of 100,000. The w0

network is simultaneously optimized with θ and uses a batch
size that is the full dataset, which corresponds to performing
the fit in Equation (4) over all the data.

3. Higgs Boson Cross Section
We now demonstrate the unfolding method in a physics case
— a Higgs boson cross section measurement. Here, we focus
on the di-photon decay channel of the Higgs boson. The
goal is then to measure the transverse momentum spectrum
of the Higgs boson pTH using the transverse momentum of
the di-photon system pTγγ at detector level. The photon reso-
lution ϵγ is considered as a nuisance parameter. In this case,
the pTγγ spectrum is minimally affected by ϵγ . Therefore, we
also consider the invariant mass spectrum of the di-photon
system mγγ at detector level, which is highly sensitive to
ϵγ . In addition, In order to have a large spectrum difference
between different data sets for demonstration purpose, we
consider only events that contain at least two reconstructed
jets, where the leading-order (LO) calculation would signifi-
cantly differ from next-to-leading-order calculation (NLO)

We prepare the following data sets:

• Dobs: used as the observed data.

• D1.0
sim: used as the nominal simulation sample.

• D1.2
sim: used as the simulation sample with a systematic

variation.

• D∗
sim: simulation sample with various ϵγ values for

training the w1 reweighter.

Dobs is generated at NLO using the POWHEGBOX pro-
gram (Oleari, 2010; Alioli et al., 2009), while the rest are
generated at LO using MADGRAPH5 aMC@LO v2.6.5 (Al-
wall et al., 2014). For all samples, the parton-level events are
processed by PYTHIA 8.235 (Sjöstrand et al., 2006; 2015)
for the Higgs decay, the parton shower, hadronization, and
the underlying event. The detector simulation is based on
DELPHES 3.5.0 (de Favereau et al., 2014) with detector re-
sponse modified from the default ATLAS detector card. For
both Dobs and D1.2

sim, the photon resolution ϵ is multiplied
by a factor of 1.2. For D∗

sim, the multiplier of ϵ is uniformly
scanned between 0.5 and 1.5 with a step size of 0.01. D1.0

sim

uses the default ATLAS detector card.

Each of the spectra of particle-level pTγγ , detector-level
pTγγ and detector-level mγγ is standardized to the spec-
trum with a mean of 0 and a standard deviation of 1 before
being passed to the neural networks. A w1 reweighter is
trained to reweight D1.0

sim to D∗
sim. The w0 reweighter and ϵ

are optimized simultaneously based on the pre-trained w1

reweighter. The prior constraint of ϵγ is 50%. The fitted
ϵγ is 1.19 ± 0.007. As shown in Figure 1, the reweighted
detector-level spectra match well with observed data. The
w0 is then used to reweight the particle-level spectrum. As
shown in Figure 2, the reweighted particle-level spectrum
agrees with the truth (corresponds to observed data). This
means that the observed data pTH spectrum is successfully
unfolded with nuisance parameter ϵγ properly profiled. For
comparison, we also perform UPU with ϵγ fixed at 1. As
shown in Figure 2, the unfolded pTH spectrum in this case
has a larger non-closure with the truth due to the lack of
profiling.

4. Conclusion and Outlook
In this paper, we proposed Unbinned Profiled Unfolding
(UPU), a new ML-based unfolding method that can process
unbinned data and profile. The method uses the binned max-
imum likelihood as the figure of merit to optimize the un-
folding reweighting function w0 (t), which takes unbinned
particle-level spectra as inputs. w0 (t) and the nuisance
parameters θ are optimized simultaneously, which also re-
quires to learn a conditional likelihood ratio w1(t, r|θ) that
reweights the detector-level spectra based on the profiled
values of nuisance parameters and is taken as an input for
the optimization of w0 (t) and θ.

We applied UPU to the Higgs boson cross section measure-
ment. We considered one dimension at particle level and
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Figure 1. Higgs boson cross section: results of the w0 optimization. The nuisance parameter ϵγ is optimized simultaneously with w0

with the prior constraint set to 50% (orange) or fixed to 1 for comparison (red). The fitted ϵγ is 1.19± 0.007. (Left) The detector-level
spectrum mγγ of the simulation template Dsim reweighted by the trained w0 × w1, compared to the mγγ spectrum of the observed data
Dobs. (Right) The detector-level spectrum pTγγ of the simulation template Dsim reweighted by the trained w0 × w1, compared to the pTγγ
spectrum of the observed data Dobs.
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Figure 2. Higgs boson cross section: the particle-level spectrum
pTγγ of the simulation template Dsim reweighted by the trained w0,
compared to the pTγγ spectrum of the observed data Dobs. The
nuisance parameter ϵγ is optimized simultaneously with w0 with
the prior constraint set to 50% (orange) or fixed to 1 for comparison
(red). The fitted ϵγ is 1.19± 0.007.

two dimensions at detector level. With one detector-level
variable sensitive to the target particle-level observable and
one sensitive to the effect of nuisance parameters, the data
are successfully unfolded and profiled. The impact of pro-
filing is also demonstrated by comparing with the result of
nuisance parameter fixed to the nominal value. This can
be readily extended to higher dimensions in either parti-
cle level or detector level, provided all particle-level and
detector-level effects are distinguishable in the considered
detector-level spectra. In the case of more than one nuisance
parameters, one can either train multiple w1 for each nui-
sance parameter separately or train a single w1 which takes
all nuisance parameters as inputs. As the effects of multiple
nuisance parameters are usually assumed independent, one
could take a product of individually trained reweighters.

As with any measurement, quantifying the uncertainty is
critical to interpret UPU results. Just as in the binned case,
one can calculate the uncertainty on the nuisance parame-
ters which can be determined by fixing a given parameter to
target values and then simultaneously re-optimizing w0 and
the rest of the nuisance parameters. A new feature of UPU is
that the likelihood (ratio) itself is only an approximation, us-
ing neural networks as surrogate models. This is a challenge
for all machine learning-based unfolding, and uncertainties
can be probed by comparing the results with different simu-
lations. Future extensions of UPU may be able to also use
machine learning to quantify these model uncertainties as
well as process unbinned data also at detector level.
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Code and data
The code for this paper can be
found at https://github.com/jaychan-
hep/UnbinnedProfiledUnfolding, which uses Jupyter
notebooks (Kluyver et al., 2016) and employs NumPy
(Harris et al., 2020) for data manipulation and Matplotlib
(Hunter, 2007) for visualization. The physics data sets are
hosted on Zenodo at (Chan & Nachman, 2023).

Broader impact
The development of the Unbinned Profiled Unfolding (UPU)
method presents significant potential for positive broader
impacts in both the field of particle physics and society at
large. By enabling unbinned unfolding and simultaneous
profiling of nuisance parameters, this novel machine learn-
ing approach offers improved accuracy and precision in
reconstructing particle energy spectra. The method’s poten-
tial benefits include enhancing our understanding of funda-
mental particles and their interactions, thereby advancing
scientific knowledge and contributing to the development
of more precise experimental techniques in particle physics
research.

Furthermore, UPU has the potential to extend beyond par-
ticle physics, with applications in various domains that in-
volve unfolding problems and the estimation of hidden dis-
tributions from observed data. For instance, it could find
applications in medical imaging, where accurate reconstruc-
tion of complex image structures from noisy and limited
data is crucial. The method may also have broader implica-
tions in fields such as finance, environmental sciences, and
social sciences, where accurate estimation of underlying
distributions and profiling of influential factors are essential
for decision-making processes.
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A. Results of the w1 training for the Higgs Boson Cross Section measurement case
As described in Section 3, the trained w1 is tested with the nominal detector level pTγγ and mγγ spectra (D1.0

sim) reweighted
to ϵγ = 1.2 and compared to the detector level pTγγ and mγγ spectra with ϵγ = 1.2. As shown in Figure 3, the trained w1

reweighter has learned to reweight the nominal detector level mγγ spectrum to match the detector level mγγ spectrum with
ϵγ at 1.2, and the detector level pTγγ variable is independent of the w1 reweighter.
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Figure 3. Higgs boson cross section: the nominal detector-level spectra mγγ (left) and pTγγ (right) with ϵγ = 1 reweighted by the trained
w1 conditioned at ϵγ = 1.2 and compared to the spectra with ϵγ = 1.2.

B. Gaussian Examples
B.1. One-dimension in both particle and detector level

In this appendix, we demonstrate the proposed method with simple numerical examples. Here, each data set represents
one-dimensional Gaussian random variables in both the particle and detector level. The particle-level random variable T is
described by mean µ and standard deviation σ, while the detector-level variable is given by

R = T + Z, (7)

where Z is a Gaussian random variable with mean β and standard deviation ϵ.

In a first example, ϵ is considered to be the only nuisance parameter, and β is fixed to 0. Three data sets are prepared for the
full training procedure. The first data set D1.0

sim is used as the nominal simulation sample, which contains 200,000 events
with µ = 0, σ = 1 and ϵ = 1. The second data set Dobs is used as the observed data, which contains 100,000 events with
µ = 0.2, σ = 1 and ϵ = 1.2. To train the w1 reweighter, the third data set D∗

sim, which contains 200,000 events with µ = 0,
σ = 1 and ϵ uniformly distributed from 0.2 to 1.8, is prepared. In addition, another data set D1.2

sim of 100,000 events with
µ = 0, σ = 1 and ϵ = 1.2 is produced for validating the w1 reweighter. All data sets used in the training procedure are split
to 50% for training and 50% for validating.

A w1 reweighter is trained to reweight D1.0
sim to D∗

sim. The trained w1 is then tested with the nominal R distribution (D1.0
sim)

reweighted to ϵ = 1.2 (w1 (R|T, ϵ = 1.2)) and compared to the R spectrum with ϵ = 1.2 (D1.2
sim). As shown in Figure 4, the

trained w1 reweighter has learned to reweight the nominal R spectrum to match the R spectrum with ϵ at 1.2.

With this trained w1 reweighter, a w0 reweighter is trained using D1.0
sim as the simulation template with Dobs as the observed

data used in Equation (4). In the first scenario, the nuisance parameter ϵ for the w1 reweighter is fixed to 1.2, and the penalty
term in Equation (4) log(θ) is set to 0 (no constraint). As shown in Figure 5, the w0 reweighter is able to learn to reweight
the particle-level spectrum T by matching the detector-level spectrum R to the observed spectrum. In the second scenario,
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Figure 4. Gaussian 1D example: the nominal R distribution (ϵ = 1) in the reweighted by the trained w1 conditioned at ϵ = 1.2 and
compared to R distribution with ϵ = 1.2.

the nuisance parameter ϵ is trained together with the w0 reweighter. The prior in the penalty term in Equation (4) is set
to be a Gaussian probability density with a 80% uncertainty. As shown in Figure 6, the trained w0 and optimized ϵ are
tested. The fitted ϵ is 1.03± 0.016 1 (true value is 1.2). The reweighted distribution matches well with observed data in the
detector-level spectrum but the particle-level spectrum has a large non-closure. This is because of the degeneracy between
the w0 and w1 reweighters in the effect on the detector-level spectrum. In other words, detector effects can mimic changes
in the particle-level cross section, so the data cannot distinguish between these two scenarios. This is a common issue which
also exists in the standard binned maximum likelihood unfolding. For comparison, we also perform the standard binned
maximum likelihood unfolding. As shown in Appendix C, the unfolded T spectrum in this case also fails to represent the
true T spectrum. An 80% uncertainty is highly exaggerated from typical scenarios, but it clearly illustrates the challenge of
profiling and unfolding at the same time (see Section 4 for a discussion about regularization).

B.2. One-dimension in particle level and two-dimension in detector level

To break the degeneracy between the w0 and w1 reweighters, we now consider a two-dimension distribution in the detector
level, which is given by

R = T + Z, (8)
R∗ = T + Z∗, (9)

where Z (Z∗) is a Gaussian random variable with mean β (β∗) and standard deviation ϵ (ϵ∗). ϵ is considered to be the only
nuisance parameter, and β, β∗ are fixed to 0, and ϵ∗ is fixed to 1. In this case, the nuisance parameter ϵ only has effect on the
R spectrum and the R∗ spectrum depends purely on the particle-level spectrum T .

Similar to the previous example, D1.0
sim is used as the nominal simulation sample, which contains 200,000 events with µ = 0,

σ = 1 and ϵ = 1. Dobs is used as the observed data, which contains 100,000 events with µ = 0.8, σ = 1 and ϵ = 1.2. To
train the w1 reweighter, D∗

sim, which contains 200,000 events with µ = 0, σ = 1 and ϵ uniformly distributed from 0.2 to 1.8,
is prepared. In addition, another data set D1.2

sim of 100,000 events with µ = 0, σ = 1 and ϵ = 1.2 is produced for validating
the w1 reweighter. All data sets used in the training procedure are split to 50% for training and 50% for validating.

A w1 reweighter is trained to reweight D1.0
sim to D∗

sim. The trained w1 is tested with the nominal R and R∗ spectra (D1.0
sim)

reweighted to ϵ = 1.2 and compared to the R and R∗ spectra with ϵ = 1.2. As shown in Figure 7, the trained w1 reweighter
has learned to reweight the nominal R spectrum to match the R spectrum with ϵ at 1.2, and R∗ is independent of the w1

1The fitted value is averaged over five different w0 reweighters which are trained in the same way, but with different random
initializations. The standard deviation of the fitted values is taken as the error.
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Figure 5. Gaussian 1D example: results of the w0 optimization. The nuisance parameter ϵ is fixed to 1.2, and the the penalty term in
Equation (4) is set to 0. (Top) The detector-level spectrum R of the simulation template Dsim reweighted by the trained w0 × w1,
compared to the R spectrum of the observed data Dobs. (Bottom) The particle-level spectrum T of the simulation template Dsim

reweighted by the trained w0, compared to the T spectrum of the observed data Dobs.
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Figure 6. Gaussian 1D example: results of the w0 optimization. The nuisance parameter ϵ is optimized simultaneously with w0 and the
best-fit value is ϵ̂ = 1.03 ± 0.016. (Left) The detector-level spectrum R of the simulation template Dsim reweighted by the trained
w0 × w1, compared to the R spectrum of the observed data Dobs. (Right) The particle-level spectrum T of the simulation template Dsim

reweighted by the trained w0, compared to the T spectrum of the observed data Dobs.
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Figure 7. Gaussian 2D example: the nominal detector-level spectra R (left) and R∗ (right) with ϵ = 1 reweighted by the trained w1

conditioned at ϵ = 1.2 and compared to the spectra with ϵ = 1.2.

reweighter.

Based on the trained w1 reweighter, a w0 reweighter and the nuisance parameter ϵ are optimized simultaneously using Dsim

as the simulation template with Dobs as the observed data used in Equation (4). As before, the prior in the penalty term
in Equation (4) is configured with an uncertainty of 80%. The fitted ϵ is 1.20 ± 0.004 (correct value is 1.2). As shown
in Figure 8, the reweighted spectra match well with observed data in both detector and particle level. For more realistic
uncertainties (so long as the simulation is close to the right answer), the fidelity is even better.

C. Binned maximum likelihood unfolding with Gaussian examples
In this appendix, we present results of the standard binned maximum likelihood unfolding (BMLU) with Gaussian examples.
The scenarios are:

• One-dimension in both particle and detector level: this is the same example as described in Appendix B.1. The prior
constraint for ϵ is set to 80%. The result is shown in Figure 9 with ϵ fitted to 1.08 ± 0.02, which also indicates a
degeneracy problem between particle and detector levels.

• One-dimension in particle level and two-dimension in detector level: this is the same example as described in
Appendix B.2. The prior constraint for ϵ is set to 80%. The result is shown in Figure 10 with ϵ fitted to 1.19± 0.003.
The degeneracy problem is resolved after considering an additional spectrum in the detector level.

All the maximum likelihood fittings are performed using pyhf (Heinrich et al.; 2021).
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Figure 8. Gaussian 2D example: results of the w0 optimization. The nuisance parameter ϵ is optimized simultaneously with w0 with
the prior constraint set to 80%. The fitted ϵ is 1.20± 0.004. (Top-left) The detector-level spectrum R of the simulation template Dsim

reweighted by the trained w0 × w1, compared to the R spectrum of the observed data Dobs. (Top-right) The detector-level spectrum R′

of the simulation template Dsim reweighted by the trained w0 × w1, compared to the R∗ spectrum of the observed data Dobs. (Bottom)
The particle-level spectrum T of the simulation template Dsim reweighted by the trained w0, compared to the T spectrum of the observed
data Dobs.



Unbinned Profiled Unfolding

8 6 4 2 0 2 40

10000

20000

30000

40000

50000

Ev
en

ts

Gaussian example

Data
Sim
BMLU ( = 1.08)

7.5 5.0 2.5 0.0 2.5 5.0
R

0.8

1.0

1.2

Re
su

lt/
Da

ta

8 6 4 2 0 2 40

20000

40000

60000
Ev

en
ts

Gaussian example

Data
Sim
BMLU ( = 1.08)

7.5 5.0 2.5 0.0 2.5 5.0
T

0.8

1.0

1.2

Re
su

lt/
Da

ta

Figure 9. Gaussian 1D example: results of the binned maximum likelihood unfolding. The prior constraint for ϵ is set to 80% and the
fitted ϵ is 1.08± 0.02. (Left) The fitted detector-level spectrum R of the simulation template Dsim, compared to the R spectrum of the
observed data Dobs. (Right) The unfolded particle-level spectrum T of the simulation template Dsim, compared to the T spectrum of the
observed data Dobs.
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Figure 10. Gaussian 2D example: results of the binned maximum likelihood unfolding. The prior constraint for ϵ is set to 80% and the
fitted ϵ is 1.19± 0.003. (Top-left) The fitted detector-level spectrum R of the simulation template Dsim, compared to the R spectrum of
the observed data Dobs. (Top-right) The fitted detector-level spectrum R∗ of the simulation template Dsim, compared to the R′ spectrum
of the observed data Dobs. (Bottom) The unfolded particle-level spectrum T of the simulation template Dsim, compared to the T spectrum
of the observed data Dobs.


