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Abstract
In inverse problems (IP) we aim to recover the un-
derlying signal from noisy measurements that are
generated according to a known forward model.
Classical methods for solving IPs usually involve
minimizing a least-squares data fidelity term to-
gether with a predetermined regularization func-
tion, which often leads to unsatisfactory recon-
structions. loop unrolling (LU) architecture ad-
dresses this issue by unrolling the optimization
iterations into a sequence of neural networks that
in effect learn a regularization function from data.
While LU is currently a state-of-the-art method
in many applications, the accuracy of the forward
model is crucial for its success. This assumption
can be limiting in many physical applications due
to model simplifications or uncertainties in the
apparatus. To address forward model mismatch,
this work introduces a forward model residual net-
work, and with an extra variable splitting step, the
proposed method can adapt to uncertain forward
models accordingly. The method achieves ∼ 2
dB PSNR increment in image blind deblurring
and seismic blind deconvolution tasks by effec-
tively learning the updates in reconstruction and
forward model jointly.

1. Introduction
Consider an inverse problem of the following form:

y = A(x) + ϵ. (1)

The goal is to reconstruct the latent signal x from the mea-
surements y in the presence of noise ϵ, where typically A is
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assumed to be known. Inverse problems are generally chal-
lenging because they are often ill-posed, i.e., the solution is
not unique, or the reconstruction is highly sensitive to noise
and/or model mismatch.

The traditional approach to recovering x from the measure-
ments y is by solving a regularized optimization problem
of the form:

min
x

1

2
∥y −A(x)∥22 + γr(x), (2)

where γ ≥ 0 is an appropriately-chosen parameter. The reg-
ularizer r is usually predetermined based on some known or
desired structure, e.g., ℓ1-, ℓ2-, or total variation (TV) norm
to promote sparsity, smoothness, or edges in image recon-
structions, respectively. Solving (2) requires careful con-
sideration of the underlying physics or the forward model
A to obtain a stable and accurate reconstruction. However,
knowing A can be challenging in practice. The reasons for
this include inaccurate measurements and challenging cali-
bration, highly nonlinear and/or computationally expensive
models replaced by simplified versions, as well as access
to only approximations of certain features. Usually, some
knowledge of the true model, designated A0 in this work,
is available. This occurs in many applications, including
blind deconvolution/deblurring problems, recovering seis-
mic layer models using the simplified acoustic wave equa-
tion as the forward model, determining fault locations in
media with unknown structures, etc.

When the forward model is precisely known, the inverse
problem in (2) can be solved via classical optimizations
where r is predefined. Machine-learning approaches, as
summarized in (Arridge et al., 2019) and (Ongie et al., 2020),
have demonstrated superior reconstruction performance by
effectively learning a regularizer from data. For example,
the Plug-and-Play method (Venkatakrishnan et al., 2013)
trains a general denoiser independently of the forward model
and iteratively minimizes (2) with the learned denoiser as
the regularization updates. Another class of approaches,
the loop unrolling (LU) method (Gregor & LeCun, 2010;
Hershey et al., 2014; Adler & Öktem, 2018; Gu et al., 2017)
and its extension using deep equilibrium model (Gilton
et al., 2021a), builds on the observation that many iterative
algorithms for solving (2) can be re-expressed as a sequence
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of neural networks (Gregor & LeCun, 2010), which can then
be trained to remove artifacts and noise patterns associated
with a known A, resulting in higher quality reconstructions.

While these optimization-guided machine learning solvers
have demonstrated impressive performance, they encounter
challenges while dealing with inaccurate forward models.
Plug-and-Play, LU, and its deep equilibrium extensions all
entail a gradient update of the data-fidelity term, which can
be in error when the forward model is inaccurate. This
causes the learned denoiser or regularizer to be ineffective.
In particular, while LU often exhibits state-of-the-art per-
formance, has faster runtime, and has improved stability in
training (Guan et al., 2022) compared to other approaches, it
requires precise knowledge of the forward model. Appendix
A demonstrates the sensitivity of LU to the forward model.

To handle errors in A, one natural approach is to train the
network with various incorrect A’s. A deep equilibrium
inverse problem solver is trained using this approach in (Hu
et al., 2023), and is shown to be more robust to changes in
A than the Plug-and-Play method. However, this approach
does not address the incorrectness in the model and it re-
quires a large amount of data. Our experiments in Section
4 show that an LU method trained with mismatched A’s
ineffectively updates the reconstruction. Model mismatches
in linear inverse problems can be more directly resolved by
alternatively updating the model parameters and the under-
lying signal. For instance, (Fergus et al., 2006; Cai et al.,
2009; Levin et al., 2009; Cho & Lee, 2009) reconstructed
the latent images with updates in the forward model. How-
ever, these methods are typically limited to linear cases with
predefined regularizers. To improve performance in this
setting, (Nan & Ji, 2020) and (Gilton et al., 2021b) learn a
regularizer from data, resulting in improved performance
on linear inverse problems.

Our work further introduces a residual network that can
learn the forward model more flexibly to handle nonlinear
problems and hence has broader scientific applications. Ex-
isting LU approaches learn a black-box solver that treats
the provided A0 as if it is the true forward model, while
A-adaptive LU updates the forward model and the recon-
struction jointly, providing both a solution to the IP and an
estimate of the true forward model.

This paper presents a machine learning-based algorithm
for solving inverse problems when an approximation of
the forward model is available. Unlike LU which requires
precise knowledge of A, the proposed method A-adaptive
LU can iteratively update the forward model along with the
reconstruction. The proposed approach introduces a neural
network that can learn the forward model mismatch and can
accommodate both linear and nonlinear inverse problems.
Compared to LU trained with various mismatched A’s, we
demonstrate an improvement of ∼2 dB in reconstruction

in image blind deblurring and seismic blind deconvolution
tasks.

2. Related Methods
2.1. Loop Unrolling Methods

The traditional approach to solving inverse problems is by
formulating them as an optimization problem of the form (2).
A natural approach to solving (2) is via a proximal gradient
descent algorithm, which can be applied even when the
regularizer r is not differentiable, as is often the case. The
resulting update involves first taking a gradient step xk −
ηA⊤(y − A(xk)) (with a fixed step size η) that aims to
minimize the data-fidelity term in (2). This is then followed
by a proximal step, resulting in the iteration:

xk+1 = proxγ,r(xk − ηA⊤(y −A(xk))), (3)

where A⊤ denotes the adjoint operator of A, γ > 0 is again
the parameter that controls the weight of the regularizer, and
the proximal operator is defined as:

proxγ,r(x) = argmin
z

1

2γ
∥x− z∥22 + r(z). (4)

As we can see, the choice of regularizer manifests itself
entirely through the proximal operator. The LU algorithm
essentially keeps the update in (3) but replaces the proximal
operator with a neural network, and limits the algorithm to
a finite number of iterations K. The final output xK is com-
pared with the ground truth x and the network parameters
are updated accordingly through end-to-end training.

By structuring the network in a way that mirrors proximal
gradient descent – and taking advantage of an accurate de-
scent direction derived from knowledge of A – the learned
portion of the network can be interpreted as the proximal
operator of a learned regularizer that enforces desired signal
structures. However, when the forward model is inexact
or only approximately known, the gradient update in (3)
can introduce errors. Since LU is trained end-to-end, the
error will manifest itself in the learned proximal operators.
As a result, the neural network used in LU will no longer
act as a pure proximal operator since it must both enforce
signal structure as well as compensate for the errors in A,
potentially becoming less effective and interpretable.

2.2. Half-Quadratic Splitting (HQS)

Another key tool that we will rely on in our approach is vari-
able splitting. Variable splitting is an iterative optimization
method that solves problems where the objective function
is a sum of multiple components (Geman & Yang, 1995;
Nikolova & Ng, 2005; Bergmann et al., 2015; Hurault et al.,
2022; Yang & Wang, 2017). It works by introducing an
auxiliary variable and iteratively optimizing the objective
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function with respect to each variable while fixing the others.
For example, by introducing an auxiliary variable z we can
re-express the optimization problem in (2) as

minimize
x,z

1

2
∥y −A(x)∥22 + γr(z), s.t. x = z. (5)

The constraints can be removed by solving

minimize
x,z

1

2
∥y −A(x)∥22 + γr(z) +

µ

2
∥x− z∥22, (6)

where µ ≥ 0 is a tuning parameter. This optimization can be
solved by iteratively updating xk and zk until convergence:

xk+1 = argmin
x

1

2
∥y −A(x)∥22 + µ∥x− zk∥22, (7)

zk+1 = argmin
z

γr(z) +
µ

2
∥z − xk+1∥22. (8)

3. Proposed Method: An A-adaptive Loop
Unrolled Architecture

The discussion above has assumed exact knowledge of A.
Here we now suppose that we have an initial guess of the
forward model A0 and a consider neural network fθ that
learns the measurement residual due to model misfit given
the signal x and A0, i.e.,

y = A0(x) + ϵ = A0(x) + fθ(x,A0) + ϵ. (9)

We assume that A0 is a useful estimate of the true forward
model, but not exact. We can then express the optimization
problem in (2) as

minimize
x,θ

1

2
∥y −A0(x)− fθ(x,A0)∥22 + γr(x)

+τ∥fθ(x,A0)∥22.
(10)

Introducing an auxiliary variable z, the solution of (10) is
equivalent to solving

minimize
x,z,θ

1

2
∥y −A0(z)− fθ(z,A0)∥22 + γr(x)

+τ∥fθ(z,A0)∥22 + λ∥x− z∥22.
(11)

Similar to the HQS updates, we first initialize x0, z0, and
θ0. We then update each variable in the objective function
by keeping other variables fixed. For k = 1, 2, . . . ,K, we
have

zk+1 = argmin
z

1

2
∥y −A0(z)− fθk(z,A0)∥22

+ τ∥fθk(z,A0)∥22 + λ∥xk − z∥22,

θk+1 = argmin
θ

1

2
∥y −A0(zk)− fθ(zk,A0)∥22

+ τ∥fθ(zk,A0)∥22,
xk+1 = proxλ,r(xk − η(xk − zk+1)).

(12)

Figure 1. Comparing the deblurring results using LU and A-
adaptive LU to the ground truth, where x0 is the initial blurry
images and x is the ground truth.

It should be noted that the update on z no longer has a
closed-form solution due to the nonlinearity of fθ. However,
this can be efficiently computed using Autograd in Pytorch
(Paszke et al., 2017) or other differentiation computing al-
gorithms (Revels et al., 2016). Meanwhile, the update on θ
follows the regular backpropagation for network parameters.
We can then replace the proximal operator with a neural
network, and the update on x connects all the components
to form an LU network. The parameters in the proximal
network are learned through end-to-end training, where η is
a trainable step size.

4. Experiments
In this study, we demonstrate the efficacy of the proposed
A-adaptive LU algorithm and show an improvement in re-
construction by learning a more accurate forward model
compared to the following baseline methods: 1) a neural
network, dϕ : x0 7→ x, which maps from the initial recon-
struction x0 to the ground-truth x, and 2) an LU network
that is trained with inexact A0’s from the initial x0. Notice
that x0 is initialized with A⊤y when x and y are from
different spaces or x0 = y if they are from the same space.
We evaluate the algorithms on image blind deblurring and
seismic blind deconvolution tasks. For each task, the net-
work dϕ and the proximal network in LU and in A-adaptive
LU share the same architecture.

Image Blind Deblurring. In this problem we aim to re-
move the blur from images y when a small amount of noise
is present. The forward model is defined by a Gaussian blur
kernel where we have inaccurate knowledge of the variance
and size of the kernel. To validate this approach, experi-
ments are conducted on the CelebA dataset (Liu et al., 2015),
which was resized to 3× 120× 100. The blurry images are
generated with different Gaussian kernels for each pair of
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data (xi,yi,A0,i).

Seismic Blind Deconvolution. Next, a seismic deconvolu-
tion problem commonly encountered in geophysical surveys
is considered. In this scenario, an acoustic wave generated
by a vibroseis truck on the surface of the earth propagates
through the earth’s layers. The reflected signals are collected
by the geophones and stored as raw measurements. These
observations undergo some data pre-processing such as fil-
tering, normal moveout correction, and common midpoint
staking (Mousa & Al-Shuhail, 2011) to remove undesirable
signals and render the seismic signals interpretable. After
the pre-processing, the measurements y are obtained in the
form of (1). Examples of y and x can be found as x0 and x
in Figure 2. However, the frequencies of the acoustic wave
are often inaccurately recorded due to the limited resolu-
tion and noise in the measurement process (Zabihi Naeini
& Sams, 2017), which leads to an inaccurate estimate of
the wavelet in the forward model. The forward process
can be viewed as a convolution between the acoustic wave
and the layer reflectivity x. Therefore, the goal of seismic
deconvolution is to reconstruct the layer reflectivities x,
with the inaccurate estimate of the wavelet in the forward
model taken into account. The true model for each data pair
(xi,yi,A0,i) can be expressed as follow,

yi = A0,ixi + fθ(xi,wi) + ϵi, (13)

where A0,i is a Toeplitz matrix derived from the inexact
source wavelet wi. The measurement is simulated by apply-
ing an inaccurate wavelet with small additive Gaussian noise
to the forward model. Notice that noise added to the true
model may result in artifacts due to an extra magnification
factor applied by xi, which is distinct from the measurement
noise ϵi. The data is generated following the procedure in
(Iqbal et al., 2019).

Reconstruction Results. Table 1 presents the compari-
son of the average testing mean-squared loss (MSE), peak
Signal-to-Noise Ratio (PSNR) in dB, and Structural Simi-
larity Index Measure (SSIM) of the reconstructions for all
tasks. The neural network dϕ learns a direct inverse inde-
pendently of A0,i. It’s worth noting that LU outperforms dϕ
even when the gradient update points to incorrect directions.
This is due to its ability to break down a difficult ill-posed
problem into multiple smaller proximal steps that are easier
to learn. Moreover, end-to-end training enables LU to fix
errors resulting from the model mismatch, thus maintaining
higher-quality results. However, LU trains a general in-
verse problem solver with inaccurate forward models. The
proposed A-adaptive LU improved LU by adapting for the
model mismatch for each data pair, significantly outperform-
ing LU and dϕ in all tasks. In addition to the quantitative
evaluation, we also present a visual comparison of the re-
construction results using LU and A-adaptive LU for the

Figure 2. Comparing the deconvolution results using fθ , LU, A-
adaptive LU to the ground truth. x0 shows the noisy trace after
pre-processing and x is the ground-truth earth layer reflectivity.
Regions corresponding to qualitative improvements is highlighted
in red boxes in the ground truth.

three tasks in Figure 1 and 2. These figures show that the
proposed algorithm removes more artifacts while preserving
more detailed information.

Table 1. Average testing MSE, PSNR and SSIM for dϕ, LU and
A-adaptive LU. The best performances for each task are in bold.

Deblurring Deconvolution

dϕ

MSE 0.004238 0.002822
PSNR 24.002 22.816
SSIM 0.7689 0.7421

LU
MSE 0.000507 0.001914
PSNR 34.380 24.785
SSIM 0.94295 0.8407

A-adaptive LU
MSE 0.000355 0.001309
PSNR 35.956 27.271
SSIM 0.9585 0.8960

5. Conclusion
Although the loop unrolling method is a powerful inverse
problem solver, it requires accurate knowledge of the for-
ward models, which can be impractical for many applica-
tions. To address this problem, this paper introduced a
novel architecture of LU to learn the forward mismatch.
The experimental results in two different tasks (image blind
deblurring, seismic blind deconvolution) have shown the
proposed A-adaptive LU not only outperformed LU trained
as a unified solver with inaccurate forward models but also
more effectively learned the reconstruction and the forward
model updates.
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A. Sensitivity of Loop Unrolling Algorithm to Uncertain A
Figure 3 illustrates the sensitivity of LU to the forward model A. The top row displays a sampled reconstruction process
using an 8-iteration LU for deblurring with the precise forward model. As expected, the reconstruction quality is visually
improving with more LU iterations k = 1, . . . , 8. However, the bottom row shows a significant degradation in performance
and poor final reconstruction x8 when a small perturbation is added to A during inference using the same network.

Figure 3. A proximal LU network is trained for a deblurring task using a single forward model. The top row shows the intermediate
reconstructions over 8 iterations using the true model, while the bottom row shows the evaluation results when a small perturbation is
added to the forward model (the Peak Signal-to-Noise Ratio of the true kernel to the noisy kernel is 40.9 dB).

B. Training Details
The proximal network for LU and A-adaptive LU uses DnCNN architecture with different numbers of layers for each task.
Image deblurring uses 5-layer DnCNN and seismic deconvolution uses 9-layer DnCNN. The hidden feature is 64 for all
applications.

The forward mismatch neural network fθ and gψ incorporate the features in A0 differently for each task. The features of
A0 are defined by the incorrect Gaussian kernel for the image deblurring task, defined by the incorrect 1D wavelet for the
seismic deconvolution task, and defined by the depth profile of the defogging task. As illustrated in 4, The features of A0

are passed to a multi-layer perceptron (MLP) block and concatenated with A0(x), and is then sent into the convolutional
network (CNN), where it is added to A0(x) to estimate y. The CNNs are 3 layers with the hidden feature of 64 for all three
tasks.

Figure 4. Architecture of the forward model mismatch network fθ and gψ .

LU and A-adaptive LU are both trained with a maximum of K = 5 iterations. For A-adaptive LU, the hyper-parameters
λ = 0.01 and τ = 0.1 in (11) for both tasks. The learning rates used to update z, θ and the parameters in the proximal
network were 0.0001. All networks were trained using the AdamW optimizer on an NVIDIA RTX 3080 with 10 GB of
RAM.

C. Software
The GitHub link will be posted here if the paper is accepted.
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D. Intermediate Reconstructions of A-adaptive LU
We also explore the effectiveness of reconstruction by comparing the intermediate reconstruction xk’s in the proximal LU
architecture and our proposed method in Figure 5. The average testing Mean-Squared Error (MSE) between xk and the
ground truth x is recorded in each k = 1, . . . , 5. The intermediate MSE of the LU network remains high until the final
iteration, indicating that the gradient update of the data fidelity term in (2) was not pointing in the correct directions due to
the errors in A. While LU provided some good results, the proximal operator was less interpretable and seemed to learn an
unknown mapping from the erroneous gradient step to the true signal. In contrast, we found that an A-adaptive LU resulted
in a constant MSE decrement, gradually approaching the best estimate.

Figure 5. This figure depicts the average mean-squared error (MSE) of the intermediate reconstructions for the 5-iteration LU network
and the A-adaptive LU network. Comparing the mean-squared error (MSE) of the two approaches, it is apparent that the MSE of LU
remains high until the final iteration, where it drops sharply. In contrast, A-adaptive LU exhibits a more effective MSE decrement as it
adapts the forward model along the way.

E. Broader Impact
In this work, a general inverse problem solver is proposed to deal with model mismatch. Each application has additional
requirements for signal reconstruction. For example, in medical image reconstruction, particular attention needs to be paid
to the accuracy of recovering specific tissue details. Task-specific designs need to be carefully considered on top of the
proposed algorithm.


