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Abstract

New and innovative methods are required to find
critical mineral deposits to transition from fossil
fuels to renewable energy. Geophysical modelling
and inversion has been crucial in finding new de-
posits over the last few decades, but success rates
are declining as the easy to find deposits have been
discovered and new deposits are deeper below the
surface. Machine learning may offer a new way
to ingest and interpret geophysical and geologi-
cal data, and improve exploration success rates.
The synergy of geophysical modelling and ma-
chine learning has not yet been well explored, and
thus far machine learning has predominantly been
used in mineral exploration to identify patterns
in disparate geophysical dataset that are not easy
to observe otherwise. In this paper we examine a
new approach to achieve better synergy between
geophysical and machine learning modelling. The
approach relies on generating an ensemble of geo-
physical inversion results by varying some of the
subjective inversion parameters, such as damping
and regularisation, and using logged drilling infor-
mation as training label to predict future drilling
success. We show the application of the method
in an active exploration program in Western Aus-
tralia, where ambient seismic noise surface wave
tomography ensemble models were used as pa-
rameters and zinc concentration from laboratory
assay results were used as labels. The method
achieved an out-of-box accuracy of 97% and iden-
tified new drill targets which are currently be-
ing investigated. Although relatively little train-
ing data was available for this project, it shows
promise as a new way to synergise geophysical
and machine learning modelling.
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1. Introduction
The exploration for minerals plays a fundamental role
in meeting the growing demand for renewable energy
technologies. As the demand for renewable energy
technologies increases, there is a need to discover new
mineral deposits at a greater rate than ever before in human
history to ensure a sustainable supply chain. However, most
easy to find deposits have been discovered and depleted,
and potential new deposits may be deeper under cover, or
located in environmentally sensitive areas. The transition to
renewable energy thus necessitates innovative exploration
techniques and methodologies to identify and extract
minerals efficiently and sustainably.

Geophysics has played an important role in making
discoveries over the past few decades, and will become
even more important as we continue to look deeper for new
deposits. Airborne potential field geophysical methods have
allowed mineral explorers to rapidly scan large areas of
land at low cost. Unfortunately these methods have limited
depth sensitivity (Tarantola, 2005) and imaging below cover
may require accurate knowledge of basement depth and
cover composition to remove the regolith contribution to the
potential field signal. Given the consistent application of
these methods through a period of discovery decline, many
industry experts agree that new approaches and techniques
are the best strategy for increasing exploration success
(Koch et al., 2015).

Machine Learning has shown promise in recent years in
mineral exploration to aid in target generation and prospec-
tivity mapping (Rodriguez-Galiano et al., 2015; Fontana
et al., 2023; Albrecht et al., 2021; Woodhead & Landry,
2021), however few studies have thus far successfully
integrated scientific and machine learning modelling in
3D. Machine learning has however found considerable use
in mineral resource estimation (Dumakor-Dupey & Arya,
2021), where the drilling data is abundant and machine
learning is typically used as a way to interpolate between
drill holes to improve confidence in resource estimates.

Some of the main challenges with modelling and inter-
preting geophysical results are non-uniqueness of the



Figure 1. Plan view of the experiment location where the new method was trialled. The white triangles indicate the location of the passive
seismic sensors and the black squares indicate the drill hole locations.

inverse problems, uncertainty in model solutions, and the
interpretation of disparate datasets with different resolutions
and depth sensitivities. Although there has been notable
work in using machine learning for automatic seismic
tomography (Bianco et al., 2019; Araya-Polo et al., 2018;
Waheed et al., 2021; Araya-Polo et al., 2019; Curtis et al.,
2019), the use of machine learning does not appear to
circumvent ”no-free-lunch” theorems, which broadly state
that superiority of an algorithm over another can only be
achieved by the use of a priori information (Fichtner et al.,
2019). The inclusion of disparate data in a machine learning
framework may well be able to improve geophysical
modelling and inversion, as it may introduce significant
additional prior knowledge. However, thus far machine
learning studies in mineral exploration appear to focus
predominantly on using multiple disparate datasets to train
models, effectively ignoring the mathematics and physics
of the geophysical inverse problem for individual methods.

In this paper we show our efforts to develop a new
approach to using machine learning with geophysical data
to predict drilling success in mineral exploration. We use an
ensemble modelling strategy to generate thousands of trial
solutions for a geophysical dataset by randomly varying
the subjective inversion parameters a geophysicist typically
needs to choose, including the inversion parametrisation,
regularisation (damping and smoothing), data cleaning
and bootstrapping. Such an ensemble modelling approach
is often used to determine the uncertainty in geophysical
datasets, since the variance of each cell for the model

solutions may be related to the uncertainty of the inversion.
Instead we use this approach to train a gradient-boosted
tree model with each of the inversion solutions for each cell
constituting the parameters, and the cells that have drill
holes intersecting them providing the training dataset with
the lithology and/or mineralisation grades as the training
label.

We argue that this approach has significant benefits over
other approaches that only consider a subjectively ’best’
solution to the geophysical inverse problem:

1. It implicitly incorporates the non-uniqueness and un-
certainty of the inverse problem by using an ensemble
of inversion models

2. It avoids subjectivity in choosing inversion parameters

3. Drilling data is included as prior information, with-
out making assumptions of the relationships between
logged drill core values and the parameter that we in-
vert for

4. By investigating the variable importance, we can iden-
tify the inversion parameters that produce models that
are best able to predicting drilling success

5. It acknowledges that no single model is perfect, and
that each model has good and bad parts

This framework can also incorporate multiple disparate
geophysical datasets as parameters.



We show the implementation of this approach for an active
mineral exploration area that is prospective for zinc, copper
and nickel. The method was able to achieve an out-of-
box accuracy of 97% when attempting to predict the % of
zinc present in bore holes. We independently verified the
accuracy of the predictions by comparing drill core that had
not been tested in laboratory assays, but which had been
scanned with a portable x-ray fluorescence (XRF) analyser
with the model predictions. The method also identified
several targets where the model predicted anomalous zinc
grades. These targets are currently being drilled, and will
provide a blind test of the model prediction accuracy.

2. Data and methods
For this study, we considered an area in Western Australia
that is being actively explored base metal deposits.
Mineralisation occurs in this region in the lower shale unit
within the surrounding basin. Regional scale faulting and
the basin margin are both considered important geological
controls for the accumulation of high-grade base metal
mineralisation. Faults provide pathways where basement
fluids rich in base metals are transported to shallower depths
and deposited in the lower shale unit. Some geophysical
methods may be able to identify the lower shale unit,
along with the regional faults, but the interpretation of
geophysical data remains subjective. Although drill results
have indicated that the area is prospective for zinc, copper
and nickel, an economic mineral deposit has not been
identified.

Recently a new geophysical method, called ambient seismic
noise surface wave tomography, was trialled at this project.
In recent years the method has shown promise as a low-cost
and high resolution 3D imaging method suitable for mineral
exploration (Alcalde et al., 2022). It has several benefits
when compared to other geophysical methods, especially
when exploring at depth or under cover. In particular, the
method shows promise as a scalable, low-cost and low
environmental impact method that can produce 3D data
for machine learning based mineral exploration. The main
drawbacks of the method is the non-uniqueness of the
inverse problem (Luke et al., 2003) and the difficulty in
interpreting seismic velocities for mineral prospectivity
(Malehmir et al., 2012). Data were recorded with 100
passive seismic recorders placed in an area of approximately
7.3 km2, with 300 m spacing between recorders. Two
further surveys were conducted with 50 receivers to the
west of the initial survey to target further drilling data to
serve as training labels. Within the bounds of these three
surveys, eleven bore holes have been drilled and analysed
for base metal occurrences (see Figure 1).

Figure 2. Schematic of the ensemble modelling and gradient
boosted trees approach. The cells that are intersected by drill
holes are used as training data for the GBT, and finally the trained
model is used to predict mineralisation in 3D for the entire grid.

Gradient Boosted Trees (GBT) is a popular ensemble
learning method that combines decision trees and gradient
boosting for accurate predictions and feature selection
(Friedman, 2001). GBT is an appealing method for examin-
ing geophysical data, as it has been shown to effectively
handle feature interactions, and provide insights into feature
importance (Chen & Guestrin, 2016). To implement GBT,
we generated an ensemble set of geophysical inversion
results. Although this approach can be taken for any
geophysical inversion, we will describe the process for the
ambient seismic noise surface wave tomography data that
has been collected.

The ensemble of models are generated by randomly varying
the damping and regularisation parameters, within a
reasonable range, for the first inversion step of the method
(regionalising pair-wise velocity measurements as a func-
tion of frequency). The pair-wise measurements are also



bootstrapped, by randomly dropping a subset of pair-wise
measurements and defining acceptance windows around the
mean of the pair-wise picks. For more information on the
first inversion used in the ANSWT method, please refer to
(Mordret et al., 2013). One could also iterate the second
step of the inversion process (depth inversion for each cell
in the 2D grid), by changing the number of subsurface
layers and the allowable velocity range for each layer. For
this study we only varied the former and generated 1000
seismic velocity volumes each containing around 220,000
cells. The 1000 velocity measurements for each cell form
the parameters for the GBT method.

To generate the training labels for the GBT, we interpolated
the drill hole assay results onto a regular grid with 10 m
cell size. The average zinc concentration for the section
of the hole intersecting each cell is used as the training
label. The corresponding parameters for these training
cells are the N model inversion results obtained by the
ensemble modelling approach. Since we only have 11
drill holes within the study area, this only resulted in just
over 3700 training labels. A schematic of the framework
is shown in Figure 2. This framework is able to ingest
disparate 3D geophysical datasets in as similar manner, so
it is trivial to include ensemble models from time-domain
electro-magnetic (TEM), magneto-telluric (MT), induced
polarisation (IP) or muon tomography data as parameters in
this approach. TEM data is currently being recorded for
this study area, and will be included in future work.

Before examining the prediction capabilities of the GBT
approach, we tested whether there is a correlation between
the seismic velocity for each cell from the ambient noise
tomography inversion results and the mineralisation from
the assayed drill core samples. In Figure 3 we show the
mean seismic velocity of the ensemble of inversion results
for each cell that has been intercepted by a logged drill core
compared to the corresponding zinc concentration in the
drill core sample, along with one standard deviation from the
ensemble as uncertainty bars. High levels of mineralisation
is predominantly associated with S-wave velocities between
2500 and 3000 m/s, likely corresponding to the velocity
of the lower shale unit. However, many cells have seismic
velocity in this range with little mineralisation, indicating a
high rate of false positives if the method is used on it’s own
for drill targeting in this geological setting. The figure also
indicates the high level of uncertainty in the inverse problem,
indicated by the large standard deviation in the ensemble for
each cell, which further indicates the difficulties associated
with drill targeting based on geophysical inversions alone.

Figure 3. Comparison of zinc parts per million and average S-wave
velocity for each cell intersected by a drill core. Horizontal lines
indicate one standard deviation measured from the ensemble. We
see that the high mineralisation is predominantly associated with S-
wave velocities between 2500 and 3000 m/s, likely corresponding
to the velocity of the lower shale unit.

3. Results
To implement the GBT approach, the zinc concentration
data were discretised into 10 bins between 0 and 15000
ppm, randomised and split into a training set (80%) and a
testing set (20%). For the GBT, 2000 decision trees were
used with a maximum depth of 10. Different values for
the shrinkage were tested and 0.02 was used for the final
results. The GBT model achieved an out-of-box accuracy
of 97% and a loss of 0.03.

The prediction results for the entire model space is shown
in Figure 4. The model suggests that significant zinc
mineralisation may be present in close proximity to the
existing boreholes. These zones are currently being tested
as part of the ongoing exploration program and will test the
predictive capabilities of this approach.

3.1. Validation of results

Given the relative small training set available for the
study area, one might question whether the model is
truly delivering new insights about mineralisation of the
subsurface, or rather over-fitting the training data. Given
that most of the samples in the training set do not contain
mineralisation, it may also be that the out-of-box accuracy
of 97% achieved in the training step is misleading and
merely a symptom of severe class imbalance. Fortunately,
in this experiment we have an independent method to
answer this question without needing to remove much of
the relatively small training set.



Figure 4. Predicted mineralisation model from the GBT model. The model show several unexplored targets with high zinc concentration.
The inset shows a comparison of the predicted concentration (background) and the XRF logged drill core (cylinder). The predicted
concentration compares well qualitatively and quantitatively with the XRF logging.

To determine the amount of zinc present in the drill core,
the samples are analysed in laboratory to determine precise
metal concentrations in a process called assaying. Nowa-
days, the composition of samples can also be determined in
the field with portable x-ray fluorescence (XRF) analysers.
Although these instruments deliver instantaneous results,
the results are typically less accurate than their laboratory
counterpart (Lemière & Uvarova, 2020).

At our experiment site a few of the boreholes had mineral
composition data from portable XRF measurements
available whereas laboratory assays were yet to be retrieved.
This provides a good test for the accuracy of the machine
learning workflow and an independent test whether the
algorithm successfully predicts mineralisation away
from training samples. A comparison of a borehole
with XRF logged zinc concentration and the predicted
zinc occurrence is shown in the inset of Figure 4. The
predicted mineralisation compares well qualitatively and
quantitatively with the XRF logging, which validates the
approach for drill targeting.

4. Conclusions
In this paper we showed a new approach to incorporating
geophysical data, machine learning and drill hole informa-
tion. The approach consists of generating an ensemble of
geophysical inversion results and training a gradient boosted
tree algorithm on the ensemble results for cells that have
been intersected by drill holes, where the drill hole assay

data serves as the label. For this study we used the % of
zinc present in the drill core as the label, but one could just
as easily use any other logged parameter, such as lithology,
alteration or faulting. By using an ensemble, we effec-
tively incorporate the non-uniqueness and uncertainty of
the geophysical inverse problem and avoid subjective inver-
sion parameter choices. The method was able to identify
new targets that are prospective for zinc. Relatively little
training data was available for this project, so the results of
this work should be interpreted with caution. Future work
involves using other machine learning methods, such as
convolutional neural networks and physics-informed neural
networks, which are likely better suited to this challenging
problem given the spatial nature of the data.

Broader impact
This method may positively impact our ability to find new
critical mineral deposits and accelerate our transition to re-
newable energy. It may also reduce the amount of drilling
required to find new deposits, ultimately reducing our envi-
ronmental impact.
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