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Abstract
Recent advancements in conversational large lan-
guage models, such as ChatGPT, have demon-
strated remarkable promise in various domains,
including drug discovery. However, drug edit-
ing, a critical task in the drug discovery pipeline,
remains largely unexplored. To bridge this gap,
we propose ChatDrug, a framework to facilitate
the systematic investigation of drug editing us-
ing LLMs. ChatDrug jointly leverages a prompt
module, a retrieval and domain feedback module,
and a conversation module to streamline effective
drug editing. We empirically show that ChatDrug
reaches the best performance on 33 out of 39 drug
editing tasks, encompassing small molecules, pep-
tides, and proteins. Through 10 case studies, we
further demonstrate that ChatDrug can identify
the key substructures for manipulation, generating
diverse and valid suggestions for drug editing.

1. Introduction
In recent years, artificial intelligence (AI) tools have made
remarkable strides in revolutionizing the field of drug dis-
covery, offering tremendous potential for accelerating and
enhancing various stages of the process (Sullivan, 2019),
including but not limited to virtual screening (Liu et al.,
2018; Rohrer & Baumann, 2009), lead optimization (Irwin
et al., 2022; Jin et al., 2020; Liu et al., 2022b; Wang et al.,
2022), reaction and retrosynthesis (Bi et al., 2021; Gottipati
et al., 2020). However, much of the existing research has
predominantly focused on the drug structure information,
solely considering the inherent chemical structure of the
drugs as a single modality. On the other hand, significant
advancements have been made in large language models
(LLMs) (Brown et al., 2020; Devlin et al., 2018; Yang et al.,
2019b), showcasing exceptional capabilities in understand-
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ing human knowledge and exhibiting promising reasoning
abilities (Huang et al., 2022; Zhou et al., 2022).

Potential of Conversational LLMs for Drug Discovery
and Editing. Conversational LLMs exhibit three com-
pelling factors that make them highly promising for drug
discovery. Firstly, these models, such as ChatGPT, are
pretrained on a comprehensive knowledge base, enabling
their application across various fields, including drug dis-
covery. This extensive “world-level” knowledge is a robust
foundation for drug-related tasks. Second, conversational
LLMs possess outstanding abilities in fast adaptation
and generalization. This adaptability and generalization
capacity holds immense potential for addressing complex
drug discovery challenges and generating valuable insights.
Noticeably, there exists an important and challenging
task: drug editing (AKA lead optimization or protein
design). This is a routine task in pharmaceutical companies,
and it aims at updating the drug’s substructures (Mihalić
& Trinajstić, 1992), and traditional solutions relying on
domain experts for manual editing can be subjective or
biased (Drews, 2000; Gomez, 2018). Recent works (Liu
et al., 2022a; 2023c) have started to explore text-guided
drug editing in a multi-modal manner. However, they do
not possess conversational potentials like ChatGPT.

Our Approach: ChatDrug. Motivated by the aforemen-
tioned factors and challenges, we propose ChatDrug, a
framework aiming to unlock new possibilities and enhance
drug editing using contrastive LLMs like ChatGPT. Chat-
Drug naturally adopts the following potentials of conver-
sational LLMs. First, ChatDrug adopts a PDDS (prompt
design for domain-specific) module, enabling strong prompt
engineering capability from LLMs. Second, ChatDrug in-
tegrates a ReDF (retrieval and domain feedback) module.
By leveraging the vast domain knowledge available, such a
ReDF module serves as guidance for prompt updates and
augments the model’s performance in generating accurate
outputs. Third, ChatDrug adopts a conversation-based ap-
proach, aligning with the iterative refinement nature of the
drug discovery pipeline. To fully verify the effectiveness
of ChatDrug, we introduce 39 editing tasks over three com-
mon drugs: 14 for small molecules, 11 for peptides, and 2
for proteins. Quantitatively, ChatDrug can reach the best
performance on 33 out of 39 drug editing tasks compared to
seven baselines. Qualitatively, we further provide 10 case
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Figure 1. The pipeline for ChatDrug with 3 modules. PDDS generates drug editing prompts. ReDF updates the prompts using retrieved
information and domain feedback. Finally, ChatDrug adopts the conversational module for interactive refinement.

studies, illustrating that ChatDrug can successfully identify
the important substructures for each type of drug.

2. Method: ChatDrug Framework
Overview. Our framework is shown in Figure 1. Chat-
Drug consists of three components: (1)Prompt Design for
Domain-Specific (PDDS) module, (2) Retrieval and Domain
Feedback (ReDF) module, and (3) conversation module.

Data Structure of Drugs. In this paper, we would like to
explore the three most common drugs: small molecules (Jay-
atunga et al., 2022), proteins (Frokjaer & Otzen, 2005), and
peptides (Craik et al., 2013). Small molecules use SMILES
strings (Weininger, 1988) and molecular graphs (Duvenaud
et al., 2015; Kearnes et al., 2016; Liu et al., 2019). In Chat-
Drug, we consider using the SMILES strings. Proteins are
complex macromolecules, and they are composed of 20
amino acids, where each amino acid is a small molecule.
Regarding the protein data structure, we adopt the amino
acid sequence. Peptides are short chains of amino acids and
can be viewed as a special type of protein. The three data
structures are demonstrated in Figure 1.

Drug Editing and Problem Formulation. Drug editing
is also known as lead optimization or protein design, an
important drug discovery task. From the machine learning
perspective, drug editing is a conditional generation prob-
lem and can be formulated as follows. Suppose the input
drug (SMILES string or amino acid sequence) is xin, and a
target or desired property in the textual description is also
known as the text prompt xt in literature (Liu et al., 2023a;
Raffel et al., 2020). Then the goal is to optimize the drug:

xout = ChatDrug(xin,xt). (1)

Then an evaluation metric E(xin,xout;xt) ∈ {True,False}
is to check if the edited drugs can satisfy the desired proper-
ties compared to the input drugs, and we will average this
over each corresponding task to get the hit ratio.

2.1. PDDS Module
ChatDrug is proposed to solve a challenging problem: gen-
eralization of a universally (w.r.t. data type and data source)
well-trained LLM to solving scientific tasks. In this paper,
we are interested in investigating this problem on the three
most common types of drugs: small molecules, protein-
binding peptides, and proteins. Recall that the goal of Chat-
Drug is in Equation (1). Here the text prompts xt should
be specifically designed to enable the generalization for
domain-specific tasks with computationally feasible metrics.
Then concretely on the prompt design, for small molecules,
we consider properties like solubility, drug-likeness, perme-
ability, and the number of acceptors/donors. For peptides,
we consider the properties of peptide-MHC binding. For
proteins, we consider the secondary structure.

2.2. ReDF Module
To better utilize the domain knowledge, we propose an im-
portant module: the ReDF (retrieval and domain feedback)
module. For each input drug xin and prompt xt, we have a
candidate drug x̃, which does not satisfy the desired prop-
erty change in xt. The candidate drug has multiple data
resources, depending on the problem setup; in ChatDrug, it
is the output drug with the negative result at each conver-
sation round (will be introduced in Section 2.3). Based on
these, ReDF will return a drug xR satisfying:

xR = argmax
x′
R
∈Retrieval DB

⟨x̃,x′
R⟩ ∧D(xin,x

′
R;xt), (2)

where D(·, ·; ·) is the domain feedback function, and
⟨x̃,x′

R⟩ is the similarity function. We use Tanimoto similar-
ity (Bajusz et al., 2015) for small molecules and Levenshtein
distance for peptides and proteins. Notice that here we take
D(·, ·; ·) the same as evaluation metric E(·, ·; ·). Then the
ReDF module injects xR into a new prompt, e.g., the up-
dated prompt is “Your provided sequence [x̃] is not correct.
We find a sequence [xR] which is correct and similar to the
molecule you provided. Can you give me a new molecule?”
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Table 1. Visualization of six small molecule editing tasks. The blue regions , red regions , and green regions correspond to the edited
substructures in the input molecule xin, intermediate molecule x1 for the 1st conversation round, and the output molecule xout.

(a) Prompt for 101 : more soluble in water (b) Prompt for 102: less soluble in water

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

LogP: 1.46 LogP: 2.24 LogP: 0.40 LogP: 3.29 LogP: 2.49 LogP: 4.31

(c) Prompt for 105: higher permeability (d) Prompt for 106: lower permeability

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

tPSA: 68 tPSA: 81 tPSA: 42 tPSA: 55 tPSA: 55 tPSA: 79

(e) Prompt for 205: more soluble in water and higher permeability (f) Prompt for 206: more soluble in water and lower permeability

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

LogP: 3.59, tPSA: 114 LogP: 3.59, tPSA: 114 LogP: 2.83, tPSA: 93 LogP: -1.83, tPSA: 116 LogP: -0.37, tPSA: 125 LogP: -2.42, tPSA: 146

2.3. Conversation Module
Another appealing attribute of conversational LLMs (like
ChatGPT) is the interactive capability. This enables the
LLMs to iteratively update the results by injecting prior
knowledge. Inspired by this, we also consider adapting the
conversational strategy for ChatDrug, which can naturally
fit the ReDF module as described in in Section 2.2. Then
concretely on this conversational strategy in ChatDrug, first
suppose there are C conversation rounds, and we have an
edited drug xc for the conversation round c. If xc satisfies
our condition in the task prompt, then ChatDrug will exit.
Otherwise, users will tell ChatDrug that xc is wrong, and
we need to retrieve another similar but correct drug from
the retrieval DB using ReDF: xR = ReDF(xin,xc), with
x̃ = xc in Equation (2).

3. Experiment
Specifications for ChatDrug. We verify the effectiveness
of ChatDrug on three types of drugs: small molecules,
peptides, and proteins. Here we select GPT-3.5 in our exper-
iment. We introduce three types of drugs and five categories
of tasks accordingly: task 1xx and 2xx are single- and multi-
objective tasks for small molecules, task 3xx and 4xx are
single- and multi-objective editing tasks for peptides, and
task 5xx is for single-objective protein editing. Due to the
space limitation, please check the appendix for the full list.

3.1. Text-guided Molecule Property Editing
We adopt 16 single-objective tasks and 12 multi-objective
editing tasks from MoleculeSTM (Liu et al., 2022a). Data:
Both the input molecules and retrieval DB are sampled

from ZINC (Irwin et al., 2012): we sample 200 and 10K
molecules (with SMILES strings) from ZINC as input
molecules and retrieval DB, respectively. Evaluation. We
take the hit ratio to measure the success ratio of edited
molecules, i.e., the percentage of edited molecules that can
reach the desired properties compared to the input molecules.
All the properties for small molecules considered here can
be calculated using RDKit (Landrum et al., 2013). Another
important argument is the threshold ∆: it is a successful
hit if the difference between input and output properties is
above the threshold. Baselines: The baselines are from (Liu
et al., 2022a), based on MegaMolBART (Irwin et al., 2022),
a pretrained auto-regressive model. Baselines include Ran-
dom, PCA, High-Variance, GS-Mutate, and MoleculeSTM
with SMILES or Graph as the molecule representation. Ob-
servation. We illustrate the descriptions and the single- and
multi-objective editing results in Tables 2 and 3, respectively.
The threshold ∆ for each specific task is specified in Table 2;
for multi-objective editing tasks in Table 3, the threshold
∆ has two values corresponding to the two tasks. We can
observe that ChatDrug can reach the best performance on 22
out of 14 tasks. Table 1 visualizes examples of 6 molecule
editing tasks where ChatDrug successfully generates output
molecules xout with desirable property change, while the
output of the first conversation round x1 fail. For example,
in Table 1a, x1 converts a methyl group to a propyl which
incorrectly yields a less soluble molecule. Through conver-
sational guidance, ChatDrug changes its output xout to an
aminoethyl group, successfully fulfilling the task.
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(a) Motifs of input peptides for 301. (b) Motifs of edited peptides for 301. (c) Motifs of experimental peptides for 301.
Figure 2. Visualization of two peptide editing tasks using PWM. The x-axis corresponds to the position index, while the y-axis corresponds
to the distribution of each amino acid (in alphabets) at each position.

(a) Protein editing with more helix structures. (b) Protein editing with more strand structures.
Figure 3. Visualization of two protein editing tasks. For the protein secondary structures, the α-helix is marked in red, and β-sheet is
marked in yellow. The edited regions before and after ChatDrug are marked in blue circles.

3.2. Text-guided Immunogenic Binding Peptide Editing
The second task is text-guided immunogenic binding pep-
tide editing. Immunogenic peptides are promising therapeu-
tic targets for the personalized vaccine. To activate CD8+ T
cell immune responses, the immunogenic peptides must first
bind to Major Histocompatibility Complex (MHC) proteins.
Data: In this experiment, we use the experimental dataset
of peptide-MHC binding affinities (O’Donnell et al., 2020).
We follow existing works (Chen et al., 2023) on using the
30 common MHC proteins (alleles) and we randomly pick
one as the source allele and one or more alleles as the tar-
get alleles. Then we sample 500 peptides from the source
allele types. For the retrieval DB, the experimental data
of the target allele(s) are adopted. Evaluation: The actual
bindings require wet-lab experiments, which are expensive
and prohibited for large scaled evaluation. Following ex-
isting works (Chen et al., 2021; 2023), we leverage the
MHCflurry2.0 (O’Donnell et al., 2020) as a pseudo-oracle
to predict the peptide-MHC binding affinity. The success of
the peptide editing needs to satisfy two conditions: (1) The
output peptide should have a higher binding affinity with the
target allele compared to the input peptide; (2) The binding
affinity of the output peptide and target allele should be
above a certain threshold. Baselines: Since there is no exist-
ing approach for text-guided binding peptide editing, we use
random mutation as the baseline, i.e., conducting random
mutation on the amino acid sequence of the input peptides.
Observation. We illustrate the single- and multi-objective
editing results in Table 4. We can observe that ChatDrug
reaches the best performance over all 9 tasks compared to
the random mutation baselines. We further visualize pep-
tides using position weight matrices (PWMs) in Figure 2.
PWM has been widely used for the visualization of protein
motifs (patterns), and it plots the distribution of each amino
acid at the corresponding position. The edited peptides fol-
low similar patterns to the experimental data. For instance,
for task 301, the edited peptides can successfully upweight

the alphabet E (glutamic acid) at position 2.

3.3. Text-guided Protein Secondary Structure Editing
Last but not least, we consider text-guided protein secondary
structure editing (PSSE) (Klausen et al., 2019). For protein
1D sequence, it can fold into the 3D structure, as shown
in Figure 1. Specifically, proteins possess four levels of
structures, and secondary structures are fundamental build-
ing blocks, which are local folding patterns stabilized by
hydrogen bonds. Typical secondary structures include α-
helix and β-sheet, consisting of β-strands. Here we are
interested in two PSSE tasks, i.e., using ChatDrug to edit
protein sequences with more helix or strand structures af-
ter folding (Jumper et al., 2021; Lin et al., 2022). Data:
TAPE (Rao et al., 2019) is a benchmark for protein sequence
property prediction, including the secondary structure pre-
diction task. We take the test dataset and training dataset as
the input proteins and retrieval DB, respectively. Baselines:
Same with peptide editing, we adopt random mutation as
baselines. Evaluation. For evaluation, we adopt the state-
of-the-art pretrained secondary structure prediction model,
i.e., ProteinCLAP-EBM-NCE model from ProteinDT (Liu
et al., 2023c). The hit condition is if the output protein
sequences have more secondary structures than the input
sequences. Observation. Because we only consider two
types of secondary structures in PSSE, the tasks are single-
objective tasks. As shown in Table 5, we can tell the large
performance gain by ChatDrug. We further visualize cases
on how ChatDrug successfully edits the proteins with more
helix/strand structures. We adopt pretrained ESMFold (Lin
et al., 2022) for protein folding (protein sequence to protein
structure prediction) and then plot the protein structures
using PyMOL (Schrödinger & DeLano). We show two
examples in Figure 3. As circled in the blue regions in Fig-
ures 3(a) and 3(b), the edited proteins possess more helix
structures and strand structures, respectively. More visual-
ization can be found in Appendix G.
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Broader impact
This work studies how to enable ChatGPT for drug edit-
ing tasks. We want to emphasize that drug editing (lead
optimization or protein design) is generally objective but
requires wet lab testing for the most rigorous model assess-
ment, and we would like to leave this for future exploration.
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Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Craik, D. J., Fairlie, D. P., Liras, S., and Price, D. The future
of peptide-based drugs. Chemical biology & drug design,
81(1):136–147, 2013.

Demirel, M. F., Liu, S., Garg, S., Shi, Z., and Liang, Y.
Attentive walk-aggregating graph neural networks. Trans-
actions on Machine Learning Research, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Drews, J. Drug discovery: a historical perspective. Science,
287(5460):1960–1964, 2000.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-
barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P.
Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing
systems, 28, 2015.

Edwards, C., Zhai, C., and Ji, H. Text2mol: Cross-modal
molecule retrieval with natural language queries. In Pro-
ceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pp. 595–607, 2021.

Edwards, C., Lai, T., Ros, K., Honke, G., and Ji, H. Trans-
lation between molecules and natural language. arXiv
preprint arXiv:2204.11817, 2022.

Frokjaer, S. and Otzen, D. E. Protein drug stability: a
formulation challenge. Nature reviews drug discovery, 4
(4):298–306, 2005.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Gomez, L. Decision making in medicinal chemistry: The
power of our intuition. ACS Medicinal Chemistry Letters,
9(10):956–958, 2018.

Gottipati, S. K., Sattarov, B., Niu, S., Pathak, Y., Wei, H.,
Liu, S., Blackburn, S., Thomas, K., Coley, C., Tang, J.,
et al. Learning to navigate the synthetically accessible
chemical space using reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 3668–3679.
PMLR, 2020.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Huang, J., Gu, S. S., Hou, L., Wu, Y., Wang, X., Yu, H., and
Han, J. Large language models can self-improve. arXiv
preprint arXiv:2210.11610, 2022.

Ingraham, J., Baranov, M., Costello, Z., Frappier, V., Ismail,
A., Tie, S., Wang, W., Xue, V., Obermeyer, F., Beam, A.,
et al. Illuminating protein space with a programmable
generative model. bioRxiv, 2022. doi: 10.1101/2022.12.
01.518682.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and
Coleman, R. G. Zinc: a free tool to discover chemistry for
biology. Journal of chemical information and modeling,
52(7):1757–1768, 2012.

Irwin, R., Dimitriadis, S., He, J., and Bjerrum, E. J. Chem-
former: a pre-trained transformer for computational



Submission and Formatting Instructions for Syns & ML at ICML 2023

chemistry. Machine Learning: Science and Technology,
3(1):015022, 2022.

Iyer, S., Lin, X. V., Pasunuru, R., Mihaylov, T., Simig,
D., Yu, P., Shuster, K., Wang, T., Liu, Q., Koura, P. S.,
et al. Opt-iml: Scaling language model instruction meta
learning through the lens of generalization. arXiv preprint
arXiv:2212.12017, 2022.

Jayatunga, M. K., Xie, W., Ruder, L., Schulze, U., and
Meier, C. Ai in small-molecule drug discovery: A coming
wave. Nat. Rev. Drug Discov, 21:175–176, 2022.

Jin, W., Barzilay, R., and Jaakkola, T. Hierarchical gen-
eration of molecular graphs using structural motifs. In
International conference on machine learning, pp. 4839–
4848. PMLR, 2020.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
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A. Main Results
Due to the space limitation, we leave the main results in this section.

Table 2. Results on eight single-objective small molecule editing, and the evaluation is the hit ratio of the property change. For ChatDrug,
we report the mean and std of five random seeds. The best results are marked in bold.

Single Target Property ∆ Random PCA High Variance GS-Mutate
MoleculeSTM

(SMILES)
MoleculeSTM

(Graph)
ChatDrug

(Ours)

101 more soluble in water
0 35.33 ± 1.31 33.80 ± 3.63 33.52 ± 3.75 52.00 ± 0.41 61.87 ± 2.67 67.86 ± 3.46 94.13±1.04
0.5 11.04 ± 2.40 10.66 ± 3.24 10.86 ± 2.56 14.67 ± 0.62 49.02 ± 1.84 54.44 ± 3.99 88.67±0.95

102 less soluble in water
0 43.36 ± 3.06 39.36 ± 2.55 42.89 ± 2.36 47.50 ± 0.41 52.71 ± 1.67 64.79 ± 2.76 96.86±1.10
0.5 19.75 ± 1.56 15.12 ± 2.93 18.22 ± 0.33 12.50 ± 0.82 30.47 ± 3.26 47.09 ± 3.42 70.08±3.44

103 more like a drug
0 38.06 ± 2.57 33.99 ± 3.72 36.20 ± 4.34 28.00 ± 0.71 36.52 ± 2.46 39.97 ± 4.32 48.65±3.39
0.1 5.27 ± 0.24 3.97 ± 0.10 4.44 ± 0.58 6.33 ± 2.09 8.81 ± 0.82 14.06 ± 3.18 19.37±5.54

104 less like a drug
0 36.96 ± 2.25 35.17 ± 2.61 39.99 ± 0.57 71.33 ± 0.85 58.59 ± 1.01 77.62 ± 2.80 70.75±2.92
0.1 6.16 ± 1.87 5.26 ± 0.95 7.56 ± 0.29 27.67 ± 3.79 37.56 ± 1.76 54.22 ± 3.12 30.99±2.66

105 higher permeability
0 25.23 ± 2.13 21.36 ± 0.79 21.98 ± 3.77 22.00 ± 0.82 57.74 ± 0.60 59.84 ± 0.78 56.56±1.84
10 17.41 ± 1.43 14.52 ± 0.80 14.66 ± 2.13 6.17 ± 0.62 47.51 ± 1.88 50.42 ± 2.73 43.08±2.95

106 lower permeability
0 16.79 ± 2.54 15.48 ± 2.40 17.10 ± 1.14 28.83 ± 1.25 34.13 ± 0.59 31.76 ± 0.97 77.35±1.98
10 11.02 ± 0.71 10.62 ± 1.86 12.01 ± 1.01 15.17 ± 1.03 26.48 ± 0.97 19.76 ± 1.31 66.69±2.74

107 more hydrogen bond acceptors 0 12.64 ± 1.64 10.85 ± 2.29 11.78 ± 0.15 21.17 ± 3.09 54.01 ± 5.26 37.35 ± 0.79 95.35±0.62
1 0.69 ± 0.01 0.90 ± 0.84 0.67 ± 0.01 1.83 ± 0.47 27.33 ± 2.62 16.13 ± 2.87 72.60±2.51

108 more hydrogen bond donors 0 2.97 ± 0.61 3.97 ± 0.55 6.23 ± 0.66 19.50 ± 2.86 28.55 ± 0.76 60.97 ± 5.09 96.54±1.31
1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.33 ± 0.24 7.69 ± 0.56 32.35 ± 2.57 76.43±3.32

Table 3. Results on six multi-objective small molecule editing, and the evaluation is the hit ratio of the property change. For ChatDrug,
we report the mean and std of five random seeds. The best results are marked in bold.

Two Target Properties ∆ Random PCA High Variance GS-Mutate
MoleculeSTM

(SMILES)
MoleculeSTM

(Graph)
ChatDrug

(Ours)

201 more soluble in water and
more hydrogen bond acceptors

0 – 0 9.88 ± 1.03 8.64 ± 2.06 9.09 ± 1.25 14.00 ± 2.48 27.87 ± 3.86 27.43 ± 3.41 79.62±0.64
0.5 – 1 0.23 ± 0.33 0.45 ± 0.64 0.22 ± 0.31 0.67 ± 0.62 8.80 ± 0.04 11.10 ± 1.80 49.64±2.66

202 less soluble in water and
more hydrogen bond acceptors

0 – 0 2.99 ± 0.38 2.00 ± 0.58 2.45 ± 0.67 7.17 ± 0.85 8.55 ± 2.75 8.21 ± 0.81 51.59±3.79
0.5 – 1 0.45 ± 0.32 0.00 ± 0.00 0.22 ± 0.31 0.17 ± 0.24 2.93 ± 0.30 0.00 ± 0.00 24.92±4.85

203 more soluble in water and
more hydrogen bond donors

0 – 0 2.28 ± 1.15 2.23 ± 1.16 4.44 ± 0.58 13.83 ± 2.95 33.51 ± 4.08 49.23 ± 1.71 89.34±0.96
0.5 – 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 9.98 ± 1.03 23.94 ± 1.09 53.64±5.81

204 less insoluble in water and
more hydrogen bond donors

0 – 0 0.69 ± 0.58 1.96 ± 0.87 1.79 ± 0.66 5.67 ± 0.62 17.03 ± 2.75 14.42 ± 3.43 39.90±3.86
0.5 – 1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.59 ± 1.14 3.84 ± 0.71 24.19±2.19

205 more soluble in water and
higher permeability

0 – 0 5.06 ± 1.21 3.53 ± 0.38 4.88 ± 2.21 8.17 ± 1.03 35.69 ± 3.19 39.74 ± 2.26 12.85±2.68
0.5 – 10 1.16 ± 0.68 0.67 ± 0.55 0.66 ± 0.54 0.00 ± 0.00 19.15 ± 0.73 22.66 ± 1.90 10.44±5.75

206 more soluble in water and
lower permeability

0 – 0 12.17 ± 1.05 10.43 ± 2.88 13.08 ± 2.28 19.83 ± 2.46 44.35 ± 0.68 30.87 ± 0.62 65.33±2.16
0.5 – 10 6.20 ± 0.64 6.23 ± 2.31 6.67 ± 0.53 4.83 ± 0.85 28.67 ± 2.22 20.06 ± 1.26 52.9±2.23

Table 4. Results on six single-objective and three multi-objective peptide editing tasks. Random Mutation-R for R mutated positions. The
evaluation is the hit ratio of the increased binding affinity score. The best results are marked in bold. Due to the space limitation, please
check Appendix E for the text prompt of each task.

single-objective editing multi-objective editing

301 302 303 304 305 306 401 402 403

Random Mutation-1 1.80 14.40 1.80 1.80 12.00 5.60 3.20 0.80 0.40
Random Mutation-2 1.80 13.40 2.80 3.00 8.40 4.40 2.20 0.60 1.20
Random Mutation-3 1.80 9.40 2.40 4.20 9.00 3.80 3.00 0.60 0.80
ChatDrug 58.60 69.34 58.52 55.11 64.40 62.73 53.71 41.45 54.71

B. Examples of ChatDrug
Here we show three concrete examples of the editing tasks on small molecules, peptides, and proteins.
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Table 5. Results on protein editing tasks. Random Mutation-R for R mutated positions. The evaluation is the hit ratio of increased
secondary structures. The best results are marked in bold.

501 more helix 502 more strand

Random Mutation-1 18.32 17.35
Random Mutation-2 24.95 19.69
Random Mutation-3 26.90 21.44
ChatDrug 34.79 51.38

Sure, here are five molecules in SMILES that are similar to the 
input molecule but have increased solubility in water and more 
hydrogen bond donors:

- O=C(NC[C@H]1CCCO1)c1ccccc1N1CCOCC1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CCNCC1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CC(O)CC1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CCC(O)C1=O
- O=C(NC[C@H]1CCCO1)c1ccccc1N1CC(O)(C)C1=O

Your provided sequence 
O=C(NC[C@H]1CCCO1)c1ccccc1N1CCOCC1=O is 
not correct. We find a sqeuence CCOC-
C(=O)Nc1ccccc1C(=O)NC[C@H]1CCCO1 which is 
correct and similar to the molecule you provided. 
Can you give me a new molecule?

I apologize for the mistake. Here is a new molecule that is similar 
to the input molecule but has increased solubility in water and 
more hydrogen bond donors:

- O=C(NC[C@H]1CCCO1)c1ccccc1N1CC(O)C(O)C1=O

This is correct.

Can you make molecule 
O=C(NC[C@H]1CCCO1)c1ccccc1N1CCCC1=O 
more soluble in water and more hydrogen bond 
donors? The output molecule should be similar to 
the input molecule. Give me five molecules in 
SMILES only and list them using bullet points. No 
explanation is needed.

Figure 4. Example of small molecule editing (task 203).

We want a peptide that binds to HLA-B*44:02. We 
have a peptide AAASHFFNL that binds to 
HLA-C*16:01, can you help modify it? The output 
peptide should be similar to input peptide. Please 
provide the possible modified peptide sequence 
only. No explanation is needed.

AAASHFFSL

Your provided sequence AAASHFFSL is not 
correct. We find a sqeuence AEAYHFFIL which is 
correct and similar to the peptide you provided. 
Can you give me a new peptide?

Sure, based on the sequence AEAYHFFIL, a possible modified 
peptide sequence that may bind to HLA-B*44:02 could be 
AEAYHFFSL.

This is correct.

Figure 5. Example of peptide editing (task 301).
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We have a protein GAPVPVDENDEGLQRALQFAMAEYN-
RASNDKYSSRVVRVISAKRQLVSGIKYILQVEIGRT-
TCPKSSGDLQSCEFHDEPEMAKYTTCTFVVYSIPWLNQIK
LLESKCQ. Can you update modify it by making more 
amino acids into the helix structure (secondary 
structure)? The input and output protein sequences 
should be similar but different. No explanation is needed.

Yes, I can modify the protein sequence to increase the helix 
structure. One way to do this is by introducing more amino acids 
with helix-forming properties into the sequence. 
The changes made are as follows:

- Replaced the amino acid "E" at position 7 with "L", which has a 
higher propensity for helix formation.
- Replaced the amino acid "A" at position 10 with "L", which also 
has a higher propensity for helix formation.
- Replaced the amino acid "N" at position 14 with "L", which has a 
high propensity for helix formation.
...
...
...
The resulting protein sequence is:
GAPVPVLLNLGLQLLLQFLLLEYNRASNDKYLLRVVLLVISLLQLVS-
GIKYILQVEIGRT-
TCPKLLGDLQLCLFHDLPEMLKYTTCTFVVYSIPWLNQLKLLESKCQ

This sequence should have an increased tendency to form 
alpha-helices due to the higher proportion of helix-forming amino 
acids.

This is correct

Figure 6. Example of protein editing (task 501).

C. Related Work
C.1. Large Language Models

Large language models (LLMs), which predict subsequent words in a sentence, have facilitated the generation of human-like
text. Initially, neural language models, such as Recurrent Neural Networks (RNNs) (Mikolov et al., 2010; Schuster & Paliwal,
1997), Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997; Zhu et al., 2015), and Gated Recurrent
Units (GRU) (Cho et al., 2014), were developed. These models processed text sequentially, allowing them to capture some
contextual nuances. However, they struggled with long-range dependencies and computational efficiency. This challenge
paved the way for the transformative architecture of Transformers (Vaswani et al., 2017), equipped with an attention
mechanism. Transformers revolutionized the handling of long-range dependencies, offering a significant improvement over
RNNs and LSTMs by enabling parallel computation across sentences. The introduction of the Transformer architecture
marked a significant shift in NLP, laying the foundation for influential models. It enables the development of BERT (Devlin
et al., 2018), T5 (Raffel et al., 2020), Generative Pre-trained Transformer (GPT) () and so on. GPT-3 (Brown et al., 2020), for
example, has 175 billion parameters and can generate human-like text that is almost indistinguishable from human writing.
Despite the advancements, large models such as GPT-2 (Radford et al., 2019), GPT-3 (Brown et al., 2020), T5 (Raffel et al.,
2020), BERT (Devlin et al., 2018) faced difficulties in consistently producing desired outputs, specifically in adhering to
natural language instructions and executing real-world tasks. This gap led to the exploration of instruction-tuning methods,
aiming to enhance the zero-shot and few-shot generalization capabilities of LLMs. Instruction-tuned counterparts, such as
ChatGPT, FLAN-T5 (Chung et al., 2022), FLANPaLM (Chung et al., 2022), and OPT-IML (Iyer et al., 2022), were born
from this endeavor. Among these, ChatGPT stands out. It was initially trained on a substantial internet text corpus, followed
by a unique fine-tuning process: AI trainers simulated a range of conversational scenarios, assuming both user and AI
assistant roles. Reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022) was later incorporated to further
boost the system’s performance. In this paper, we aim to leverage the large language model to explore its functionality in the
drug editing domain.
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C.2. Multi-modal Modeling for Small Molecule Discovery

Small molecules can be roughly categorized into two big modalities (Liu et al., 2022a; Zeng et al., 2022): the internal
chemical structure and external description. The internal chemical structure refers to the molecule’s structure information,
e.g., 1D sequence (SMILES) (Weininger, 1988), 2D molecular graph (Demirel et al., 2021; Duvenaud et al., 2015; Gilmer
et al., 2017; Yang et al., 2019a), and 3D geometric graph (Satorras et al., 2021; Schütt et al., 2018; 2021; Thomas et al.,
2018). On the other hand, the external description depicts the high-level information of molecules, e.g., the molecule’s
binding affinity with potential targets, and the functionalities of molecules.

Recently, a research line has been starting to bridge the gap between such two modalities. KV-PLM (Zeng et al., 2022) first
applies the joint masking auto-encoding on the SMILES string and biomedical textual description. Text2Mol (Edwards
et al., 2021) conducts contrastive learning between molecular graph and text data for retrieval tasks between modalities.
MolT5 (Edwards et al., 2022) does the translation between SMILES and textual annotation of molecules in a mutual way.
MoMu (Su et al., 2022) also conducts contrastive learning while it considers both the retrieval and molecule captioning
and text-to-molecule tasks. MoleculeSTM (Liu et al., 2022a) proposes a larger molecule-text dataset and highlights the
text-guided molecule editing tasks. Such tasks reveal the potential of LLMs for more realistic drug discovery tasks.

C.3. Multi-modal Modeling for Peptide and Protein Discovery

There have also been several works exploring multi-modal modeling for protein discovery. ProGen (Madani et al., 2020) is a
text-to-sequence protein design framework, but it is fixed to a predefined set of texts, which can be treated with indices.
Thus it is not open-vocabulary and lacks the generalization ability to novel textual descriptions. Besides, the predefined
texts and indices cannot sufficiently describe the protein functions (Zhang et al., 2020). ProteinDT (Liu et al., 2023c) is a
recent work that addresses this issue with free-text protein design. A parallel work is Chroma (Ingraham et al., 2022), and it
conducts text-guided protein editing on the backbone structure instead of the sequence.

D. Data Specification
Drugs like small molecules and proteins can have multiple modalities. Specifically, small molecules can be naturally
represented as 1D sequence, 2D molecular graph, and 3D geometric graph, biological knowledge graph, and textual
description. The first three data structures capture the internal chemical structure information, while the last two data
structures provide a higher-level view of the molecule’s functionalities (e.g., the molecule’s interactions with other proteins
or diseases.).

There are 20 amino acids in nature, as listed below:
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Table 6. 20 amino acids and the corresponding abbreviations.

Amino Acid Alphabet

Isoleucine I
Valine V
Leucine L
Phenylalanine F
Cysteine C
Methionine M
Alanine A
Glycine G
Threonine T
Serine S
Tryptophan W
Tyrosine Y
Proline P
Histidine H
Asparagine N
Asparatic acid D
Glutamine Q
Glutamic acid E
Lysine K
Arginine R
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E. Task Specification
Here we present all the task specifications and prompts used in our experiments.

• We list the template of prompts of two stages of PDDS and ReDF in Tables 7, 9 and 11 for small molecules, peptides,
and proteins, respectively.

• We list the corresponding task requirement and allele type information in Tables 8, 10 and 12.
• We further list the prompts of in-context learning in Table 13 for reference.

Table 7. Prompt for small molecule editing. The task requirement can be found in Table 8.

Task Module Prompt

1xx
(101-108)

PDDS
Can you make molecule [input SMILES] [task requirement 1]? The output molecule should be
similar to the input molecule. Give me five molecules in SMILES only and list them using bullet
points. No explanation is needed.

ReDF
Your provided sequence [output SMILES] is not correct. We find a sequence [retrieved SMILES]
which is correct and similar to the molecule you provided. Can you give me a new molecule?

2xx
(201-206)

PDDS

Can you make molecule [input SMILES] [task requirement 1] and [task requirement 2]? The output
molecule should be similar to the input molecule. Give me five molecules in SMILES only and list
them using bullet points. No explanation is needed.

ReDF
Your provided sequence [output SMILES] is not correct. We find a sequence [retrieved SMILES]
which is correct and similar to the molecule you provided. Can you give me a new molecule?

Table 8. Task requirement for small molecule editing, corresponding to Table 7.

Task ID Task Requirement 1 Task Requirement 2

101 more soluble in water None
103 more like a drug None
104 less like a drug None
105 higher permeability None
106 lower permeability None
107 more hydrogen bond acceptors None
108 more hydrogen bond donors None

201 more soluble in water more hydrogen bond acceptors
202 less soluble in water more hydrogen bond acceptors
203 more soluble in water more hydrogen bond donors
204 less soluble in water more hydrogen bond donors
205 more soluble in water higher permeability
206 more soluble in water lower permeability
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Table 9. Prompt for peptide editing. The source allele target type and target allele type can be found in Table 10.

Task Stage Prompt

3xx
(301-306)

PDDS

We want a peptide that binds to [target allele type 1]. We have a peptide [input peptide] that binds to
[source allele type], can you help modify it? The output peptide should be similar to input peptide.
Please provide the possible modified peptide sequence only. No explanation is needed.

ReDF
Your provided sequence [output peptide] is not correct. We find a sequence [retrieved peptide]
which is correct and similar to the peptide you provided. Can you give me a new peptide?

4xx
(401-403)

PDDS

We want a peptide that binds to [target allele type 1] and [target allele type 2]. We have a peptide
[input peptide] that binds to [source allele type], can you help modify it? The output peptide
should be similar to input peptide. Please provide the possible modified peptide sequence only. No
explanation is needed.

ReDF
Your provided sequence [output peptide] is not correct. We find a sequence [retrieved peptide]
which is correct and similar to the peptide you provided. Can you give me a new peptide?

Table 10. Target allele type and source allele type for peptide editing, corresponding to Table 9

Task ID Source Allele Type Target Allele Type 1 Target Allele Type 2

301 HLA-C*16:01 HLA-B*44:02 None
302 HLA-B*08:01 HLA-C*03:03 None
303 HLA-C*12:02 HLA-B*40:01 None
304 HLA-A*11:01 HLA-B*08:01 None
305 HLA-A*24:02 HLA-B*08:01 None
306 HLA-C*12:02 HLA-B*40:02 None

401 HLA-A*29:02 HLA-B*08:01 HLA-C*15:02
402 HLA-A*03:01 HLA-B*40:02 HLA-C*14:02
403 HLA-C*14:02 HLA-B*08:01 HLA-A*11:01

Table 11. Prompt of Conversation Module for protein editing. The task requirement can be found in Table 12.

Task ID Prompt

5xx
(501-502)

PDDS
We have a protein [input protein]. Can you update modify it by [task requirement]? The input and
output protein sequences should be similar but different. No explanation is needed.

ReDF
Your provided sequence [output protein] is not correct. We find a sequence [retrieved protein]
which is correct and similar to the protein you provided. Can you give me a new protein?

Table 12. Task requirement for protein editing, corresponding to Table 11.

Task ID Task Requirement

501 making more amino acids into the helix structure (secondary structure)
502 making more amino acids into the strand structure (secondary structure)
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Table 13. Prompt of in-context learning.

Task Prompt

1xx
(101-108)

Can you make molecule [input SMILES] [task requirement]? The output molecule should be similar to the
input molecule. We have known that similar molecule [retrieved SMILES] is one of the correct answers. Give
me another five molecules in SMILES only and list them using bullet points. No explanation is needed.

2xx
(201-208)

Can you make molecule [input SMILES] [task requirement 1] and [ask requirement 2]? The output molecule
should be similar to the input molecule. We have known that similar molecule [retrieved SMILES] is one of
the correct answers. Give me another five molecules in SMILES only and list them using bullet points. No
explanation is needed.

3xx
(301-306)

We want a peptide that binds to [target allele type]. We have a peptide [input peptide] that binds to [source
allele type], can you help modify it? The output peptide should be similar to input peptide. We have known
that similar peptide [retrieved peptide] is one of the correct answers. Please provide another possible modified
peptide sequence only. No explanation is needed.

4xx
(401-403)

We want a peptide that binds to [target allele type 1] and [target allele type 2]. We have a peptide [input peptide]
that binds to [source allele type], can you help modify it? The output peptide should be similar to input peptide.
We have known that similar peptide [retrieved peptide] is one of the correct answers. Please provide another
possible modified peptide sequence only. No explanation is needed.

5xx
(501-502)

We have a protein [input protein]. Can you update modify it by [task requirement]? The input and output protein
sequences should be similar but different. We have known that similar protein [retrieved protein] is one of the
correct answers. Please provide another possible modified protein only. No explanation is needed.

F. Implementation and Hyperparameters
F.1. ChatGPT Settings

We implement our experiments with ChatGPT through OpenAI API. Specifically, we utilize the model gpt-3.5-turbo under
ChatCompletion function, which is the standard approach for deploying ChatGPT. To facilitate the replication of our
experiments, we set the temperature to 0, ensuring deterministic output. Additionally, we observe that ChatGPT often
generates repeated sequences or fails to stop generating sequences for chemistry-related questions. To mitigate this issue, we
set the frequency penalty to 0.2. Moreover, for improved adaptation to different domains, it is advisable to incorporate
a system role prompt within ChatGPT. In our case, we utilize the following prompt: ”You are an expert in the field of
molecular chemistry.”

F.2. Experiments Threshold for Small Molecule Editing

Following MoleculeSTM (Liu et al., 2022a), in our small molecule editing experiments, we utilize two different threshold
settings: a loose threshold and a strict threshold. For the main results in Tables 2 and 3, we keep the same threshold for
domain feedback function D and evaluation function E. The threshold ∆ used for each small molecule editing task is
shown in Table 14, which holds for both functions.

F.3. Experiments Threshold for Peptide Editing

For the peptide editing task, as mentioned in Section 3, we take the threshold as one-half of the average binding affinity of
experimental data on the target allele. The original average binding affinity of each experimental data can be found in the
source code.

F.4. Evaluation Metric

We evaluate the performance of ChatDrug by hit ratio, which is computed by the following equation:

Hit Ratio =
Number of Success Sequence Editing

Number of Valid Sequence Editing
(3)
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Table 14. Threshold ∆ for each small molecule editing task, ∆1 and ∆2 represent the threshold of task requirement 1 and task requirement
2, respectively.

Task ID Loose Threshold Strict Threshold

∆1 ∆2 ∆1 ∆2

101 0 – 0.5 –
102 0 – 0.5 –
103 0 – 0.1 –
104 0 – 0.1 –
105 0 – 10 –
106 0 – 10 –
107 0 – 1 –
108 0 – 1 –

201 0 0 0.5 1
202 0 0 0.5 1
203 0 0 0.5 1
204 0 0 0.5 1
205 0 0 0.5 10
206 0 0 0.5 10

One point we need to highlight is that if ChatDrug returns an invalid sequence, we would just skip and do not consider it in
computing the hit ratio. That is why we use “Number of Valid Sequence Editing” as the denominator here.

In small molecule editing tasks, ChatDrug tends to return more than one sequence in the PDDS module. Thus, we add a
prompt “Give me five molecules in SMILES only and list them using bullet points.” to unify the numbers and format of
molecules returned by ChatDrug. In the experiments of the Conversation module, we always choose the first valid molecule
as the beginning of the conversation. We further carry out an ablation study to explore the effect of using more molecules in
the PDDS module.

F.5. Randomness

The experiment results of the PDDS Module are entirely deterministic. Any randomness observed in ReDF Module and
Conversation Module is due to the utilization of different seeds during the sampling of retrieval database DB from ZINC for
molecule editing.

Specifically, for small molecule editing, we adopt seed 0,1,2,3,4 for main results in Tables 2 and 3, and seed 0 for the other
ablation studies.

F.6. Computational Resources

All of our experiments are conducted on a single NVIDIA RTX A6000 GPU. The GPU is only used for peptide and protein
evaluation. The primary cost incurred during our experiments comes from the usage of the OpenAI API for ChatGPT, which
amounted to less than $100 in total.

G. Qualitative Analysis
In the main body, we provide 10 case studies and 3 similarity distributions to illustrate the effectiveness of ChatDrug for
small molecule editing, peptide editing, and protein editing.

In this section, we provide additional case studies and similarity distributions as follows:

• We list 8 case studies on functional group change of small molecules in Appendix G.1.
• We list 9 motif updates for all 9 peptide editing tasks in Appendix G.2.
• We list 8 case studies on secondary structure change of proteins in Appendix G.3.
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We want to specify that for all the qualitative analyses listed here, we are using C = 2 conversation rounds. Especially
for small molecules, we consider random seed with 0 and the loose threshold, i.e., ∆ = 0 for all tasks.

G.1. Small Molecules

Table 15 visualizes examples of 8 molecule editing tasks where ChatDrug successfully generates output molecules xout with
desirable property change, while the output of the first conversation round x1 fail. In Table 15a and b, xout successfully adds
the desirable fragments to alter the drug likeness of xin, while x1 does so in the wrong direction. In Table 15c, x1 installs a
chloride but maintains the same number of hydrogen bond acceptors (HBAs). In contrast, ChatDrug adds a salicylamide
moiety that brings two more HBAs. Similarly, in Table 15d, the number of hydrogen bond donors (HBDs) remains in x1

but successfully increases in xout via insertions of alcohols and amines.

In Table 15e and f, both cases of x1 are able to increase the number of HBAs as indicated in the prompt, but the water
solubilities shift oppositely. The output molecules successfully fix the trend. In particular, hydrophibicity is appropriately
employed in Table 15f to balance the additional polarity from HBAs, generating a less soluble molecule. In Table 15g and h,
both cases of x1 satisfy the solubility requirement but not through the change of HBDs. In xout, the problems are solved by
having extra HBDs with further enhanced solubility changes.

Table 15. Visualization of additional eight small molecule editing cases. The blue regions , red regions , and green regions correspond
to the edited substructures in the input molecule xin, intermediate molecule x1 in the 1st conversation round, and the output molecule
xout, respectively.

(a) Prompt for 103: more like a drug (b) Prompt for 104: less like a drug

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

QED: 0.648 QED: 0.550 QED: 0.815 QED: 0.631 QED: 0.637 QED: 0.397

(c) Prompt for 107: more hydrogen bond acceptors (d) Prompt for 108: more hydrogen bond donors

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

HBA: 2 HBA: 2 HBA: 4 HBD: 1 HBD: 1 HBD: 3

(e) Prompt for 201: more soluble in water and more hydrogen bond acceptors (f) Prompt for 202: less soluble in water and more hydrogen bond acceptors

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

LogP: 1.12, HBA: 4 LogP: 1.34, HBA: 5 LogP: -0.42, HBA: 6 LogP: 0.98, HBA: 3 LogP: 0.02, HBA: 4 LogP: 1.68, HBA: 5

(g) Prompt for 203: more soluble in water and more hydrogen bond donors (h) Prompt for 204: less soluble in water and more hydrogen bond donors

Input Molecule xin Intermediate Molecule x1 Output Molecule xout Input Molecule xin Intermediate Molecule x1 Output Molecule xout

LogP: 1.29, HBD: 1 LogP: 0.52, HBD: 1 LogP: -0.77, HBD: 3 LogP: 2.14, HBD: 0 LogP: 2.75, HBD: 0 LogP: 3.62, HBD: 2



Submission and Formatting Instructions for Syns & ML at ICML 2023

G.2. Peptide

In the main body, we have illustrated how the motif of peptides changes for two peptide editing tasks. Here we show all 6
single-objective editing tasks in Figures 7 to 12.

• For task 301 in Figure 7, ChatDrug can successfully upweight E (Glutamic acid) at position 2.
• For task 302 in Figure 8, ChatDrug can successfully upweight A (Alanine) at position 2, and L (Leucine) at position
9.
• For task 303 in Figure 9, ChatDrug can successfully upweight E (Glutamic acid) at position 2, and L (Leucine) at
position 9.
• For task 304 in Figure 10, ChatDrug can successfully upweight R (Arginine) and K (Lysine) at position 5, and L
(Leucine) at position 9.
• For task 305 in Figure 11, ChatDrug can successfully upweight R (Arginine) and K (Lysine) at position 5, and L
(Leucine) at position 9.
• For task 306 in Figure 12, ChatDrug can successfully upweight E (Glutamic acid) at position 2, and L (Leucine) at
position 9.
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(a) Motif of input peptides. (b) Motif of edited peptides. (c) Motif of experimental peptides.

Figure 7. Visualization for peptide editing for task 301.

(a) Motif of input peptides. (b) Motif of edited peptides. (c) Motif of experimental peptides.

Figure 8. Visualization for peptide editing for task 302.

(a) Motif of input peptides. (b) Motif of edited peptides. (c) Motif of experimental peptides.

Figure 9. Visualization for peptide editing for task 303.

(a) Motif of input peptides. (b) Motif of edited peptides. (c) Motif of experimental peptides.

Figure 10. Visualization for peptide editing for task 304.

(a) Motif of input peptides. (b) Motif of edited peptides. (c) Motif of experimental peptides.

Figure 11. Visualization for peptide editing for task 305.

(a) Motif of input peptides. (b) Motif of edited peptides. (c) Motif of experimental peptides.

Figure 12. Visualization for peptide editing for task 306.
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Here we show all 3 multi-objective editing tasks in Figures 13 to 15. Notice that here there are two target allele types, and
we mark them as “target allele 1” and “target allele 2”.

• For task 401 in Figure 13, ChatDrug can successfully upweight R (Arginine) and K (Lysine) at position 5, and L
(Leucine) and F (Phenylalanine) at position 9 for target allele type 1. ChatDrug can also upweight L (Leucine) at
position 7, and V (Valine) and L (Leucine) at position 9 for target allele type 2.
• For task 402 in Figure 14, ChatDrug can successfully upweight E (Glutamic acid) at position 2, and L (Leucine) at
position 9 for target allele type 1. ChatDrug can also upweight F (Phenylalanine) and L (Leucine) at position 9 for
target allele type 2.
• For task 403 in Figure 15, ChatDrug can successfully upweight R (Arginine) and K (Lysine) at position 5, and L
(Leucine) at position 9 for target allele type 1.

(a) Motif of input peptides. (b) Motif of edited peptides.

(c) Motif of experimental peptides (target allele 1). (d) Motif of experimental peptides (target allele
2).

Figure 13. Visualization for peptide editing for task 401.

(a) Motif of input peptides. (b) Motif of edited peptides.

(c) Motif of experimental peptides (target allele 1). (d) Motif of experimental peptides (target allele
2).

Figure 14. Visualization for peptide editing for task 402.

(a) Motif of input peptides. (b) Motif of edited peptides.

(c) Motif of experimental peptides (target allele 1). (d) Motif of experimental peptides (target allele
2).

Figure 15. Visualization for peptide editing for task 403.
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G.3. Protein

Recall that we consider two types of secondary structures for protein editing tasks. Both the inputs and outputs are protein
sequences. Then we use ESMFold (Lin et al., 2022) for protein folding (protein sequence to protein structure prediction)
and then plot the protein structures using PyMOL (Schrödinger & DeLano). For all the protein structure visualizations, we
mark α-helix structures and β-strand structures. The edited regions are highlighted in the blue circles.

Task 501: edit proteins with more helix structures.

(a) Protein editing with more helix for data 1. (b) Protein editing with more helix for data 2.

(c) Protein editing with more helix for data 3. (d) Protein editing with more helix for data 4.

Figure 16. Protein editing with more α-helix structures.

Task 502: edit proteins with more strand structures.

(a) Protein editing with more helix for data 1. (b) Protein editing with more helix for data 2.

(c) Protein editing with more helix for data 3. (d) Protein editing with more helix for data 4.

Figure 17. Protein editing with more β-strand structures.
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H. Limitation and Conclusion
In this work, we present ChatDrug, a framework that utilizes ChatGPT for drug editing tasks. We build up a benchmark
on 27 tasks over three main types of drugs: small molecules, peptides, and proteins. Empirical results have verified the
effectiveness of ChatDrug on these drug editing tasks, and the visual analysis further qualitatively illustrates how ChatDrug
can modify the key substructures for the target properties. Thus, we posit that using conversational LLMs for drug editing is
a promising direction for both the machine learning and drug discovery communities.

Meanwhile, ChatDrug also possesses certain limitations. One limitation is that ChatDrug is not good at understanding
the complex structures of drugs, i.e., the 3D geometries (Liu et al., 2023b). This may require a more profound utilization of
geometric modeling. Another limitation is that ChatDrug requires certain conversational rounds to reach strong performance.
An ideal solution is to reduce such computational costs using the knowledge summarization ability of ChatGPT, and we
leave this for future work.


