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Abstract

To achieve virtual certification for industrial de-
sign, quantifying the uncertainties in simulation-
driven processes is crucial. We discuss a physics-
constrained approach to account for epistemic
uncertainty of turbulence models. In order to
eliminate user input, we incorporate a data-driven
machine learning strategy. In addition to it, our
study focuses on developing an a priori estima-
tion of prediction confidence when accurate data
is scarce.

1. Introduction
In the past, the interest in Uncertainty Quantification (UQ)
for Computational Fluid Dynamics (CFD) simulations has
increased, leading to more reliable simulation-based engi-
neering designs (Karniadakis, 2002; Oberkampf & Roy,
2010; Xiao & Cinnella, 2019). Reynolds-averaged Navier-
Stokes (RANS) turbulence modeling is still widely used in
industrial design due to its computational efficiency. How-
ever, RANS equations have an unresolved term called the
Reynolds stress tensor, requiring approximation using tur-
bulence models. The accuracy of these models is crucial but
often limited (Speziale, 1991; Mompean et al., 1996; Craft
et al., 1996). Simplifications in turbulence model formula-
tion introduce significant epistemic uncertainties.
The Eigenspace Perturbation Framework (EPF) tries to es-
timate the model-form uncertainty of the the turbulence
model and helps optimize design with reduced sensitivity
to uncertainty (Emory et al., 2013; Iaccarino et al., 2017;
Mishra & Iaccarino, 2019). It has been successfully applied
in aerospace, turbomachinery, civil structural, and wind
farm design (Mishra & Iaccarino, 2017; Cook et al., 2019;
Mishra et al., 2020; 2019; Lamberti & Gorlé, 2019; Eidi
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et al., 2021). Data-driven approaches, aided by high-fidelity
simulations and Machine Learning (ML), are gaining pop-
ularity in RANS turbulence modeling (Heyse et al., 2021;
Matha & Kucharczyk, 2022). The present study, which
was the foundation of the CFD application results in our
previous paper (Matha et al., 2023), focuses on the use of
data-driven methods in order to identify flow regions with
potential turbulence model prediction inaccuracies. Random
forests (RF) are trained and validated using additional data
from scale-resolving simulations. We analyze a methodol-
ogy to assess a priori prediction confidence. Our framework
is an amalgam of physics based domain knowledge with
data-driven RF.

2. Eigenspace Perturbation Framework
The Eigenspace Perturbation approach aims to provide un-
derstandable uncertainty bounds for modeling the Reynolds
stress tensor based on physical principles. The Reynolds
stress tensor can be decomposed as

τij = k
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2
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δij

)
= k
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3
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)
, (1)

with k = 1
2τii being the turbulent kinetic energy. The

eigenspace decomposition provides the eigenvector matrix
v and the diagonal eigenvalue matrix Λ. Emory et al. (2013)
propose a strategy to perturb the eigenvalues in Equation (1),
resulting in a perturbed state of the Reynolds stresses

τ∗ij = k
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∗
nlvjl +

2

3
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)
. (2)

The eigenvalue perturbation, which involves determining
Λ∗, builds on the concept that every physically realizable
state of the Reynolds stress tensor can be represented by
barycentric coordinates. In this representation, all realizable
states of the Reynolds stress tensor lie within or on the
boundaries of the barycentric triangle. The vertices of this
triangle represent limiting states of turbulence (one- (1C),
two- (2C) and three-component isotropic (3C) state). A
linear mapping is defined between these vertices and the
eigenvalues λ1 ≥ λ2 ≥ λ3 of the Reynolds stress anisotropy
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(Banerjee et al., 2007) (see Figure 1):

x = x1C
λ1 − λ2

2
+x2 (λ2 − λ3)+x3C

(
3λ3

2
+ 1

)
(3)

The eigenvalue perturbation is defined as a shift in barycen-
tric coordinates towards each of the limiting states x(t) ∈
{x1C ,x2C ,x3C} by the relative distance ∆B ∈ [0, 1]:

x∗
RANS = xRANS +∆B

(
x(t) − xRANS

)
. (4)

The final perturbed eigenvalues λ∗
i can be remapped by

inverting Equation (3) based on x∗
RANS.

Nevertheless, the uniform perturbation in the data-free pro-
cedure fails to capture the varying discrepancies between
CFD’s turbulence model based results and accurate turbu-
lence physics across different flows and regions. Variation
in the perturbation magnitude reflects the true model-form
uncertainty more approriate, resulting in precise and less
conservative uncertainty bounds for Quantities of Interest
(QoI) (Emory, 2014; Heyse et al., 2021; Matha et al., 2023).
Therefore, we introduce a local perturbation strengths

p = |xData − xRANS| = |x∗
RANS − xRANS| , (5)

as illustrated in Figure 1. The perturbation strength p should
be predicted by a ML model in order to modify the Reynolds
stress towards the same three limiting states as in the physics-
constrained data-free approach. Hereby, on top of the foun-
dation of the EPF, which is allowing for understandable
uncertainty estimates for turbulence modeling, we incorpo-
rate data-driven ML techniques to enhance the predictive
capabilities of the entire framework. The final application of
propagating these perturbations throughout the RANS solver
is beyond the scope of this paper (for details on that see
(Heyse et al., 2021; Matha et al., 2023)). Additionally, ML
predicted p, representing the deviation of barycentric coordi-
nates from high-fidelity data to RANS simulations, might be
helpful for future turbulence modeling activities aiming for
correct representation of Reynolds stress anisotropy (Singh
et al., 2017).

3. Application of Random Forests
In this work, the python library scikit-learn (Pedregosa et al.,
2011) is used to train RF and evaluate their predicted pertur-
bation strength p.

3.1. Choice of flow features

The selection of input features is crucial for accurately pre-
dictions. It is important to choose features that have a mean-
ingful physical significance and are relevant to the desired
target quantity. Therefore, we agree on using four input
quantities Q = (S,Ω,∇p,∇k), whereby the input tensors
S, Ω represent strain rate and rotation rate, while ∇p and

x1Cx2C

x3C

xRANS

x∗
RANS

∆B

xData

p

Figure 1. Barycentric triangle: schematic representation of the
eigenvalue perturbation and definition of perturbation strength.

∇k are the gradients of pressure and turbulent kinetic energy
(Wang et al., 2018). Normalizing the raw input quantities
by a factor β and the absolute value of each element α
according to α̂ = α

|α|+|β| (Ling et al., 2016), lead to the
determination of non-dimensional flow features, which are
presented in Table 1.

Table 1. Raw flow features for constructing the invariant basis
Normalized input α̂ raw input α normalization factor β

Ŝ S ω

Ω̂ Ω ||Ω||
∇̂p ∇p ρ||U · ∇U||
∇̂k ∇k ω

√
k

Inspired by the work of Wang et al. (2018), we determine
the integrity feature basis based on the non-dimensional
raw flow features resulting in 47 invariant features. These
invariants, along with additional physically meaningful flow
features, serve as input for training and evaluating the RF.
The additional features presented in Table 2 include vari-
ables such as turbulent kinetic energy k, specific turbulent

Table 2. Physical flow features
Numbering raw input α normalization factor β
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2
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2
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Table 3. Accuracy of RF: x means part of training data, ◦ means not part of training data, red means data set for evaluation of RMSE

Scenario

Flow cases I Ia II IIa III IIIa IIIb IIII IIIIa V

turbulent channel x x x x x x x ◦ x x
periodic hill

· ReH ∈ {2800, 5600, 10595} x x x x ◦ x x x x
· ReH ∈ {2800, 10595} x
· ReH = 5600 ◦

wavy wall x x ◦ x x x x x x x
converging-diverging channel ◦ x x x x x x x x x

RMSE (ppred, ptrue) 0.098 0.010 0.133 0.029 0.095 0.028 0.041 0.051 0.014 0.013

dissipation rate ω, molecular viscosity µ, eddy viscosity
µt, distance to the nearest wall d, local Mach number Ma,
mean velocity Ui and its gradient tensor, and mean pressure
p and its gradient vector.

A total number of 56 input features is used for training
and evaluating the RF. Finally, to standardize each feature,
the mean is subtracted and the data is scaled to have unit
variance.

3.2. Data sets

For the present study, we use the following high-fidelity
simulations (Direct Numerical Simulation (DNS) and Large
Eddy Simulations (LES)) as training and testing data sets:

• DNS of turbulent channel flow at Reτ ∈
{180, 550, 1000, 2000, 5200} (Lee & Moser, 2015)

• DNS at ReH ∈ {2800, 5600} and LES at ReH =
10595 of periodic hill flow (Breuer et al., 2009)

• DNS of wavy wall flow at ReH = 6850 (Rossi, 2006)

• DNS of converging-diverging channel flow at Reτ =
617 (Laval & Marquillie, 2011).

While the input features are extracted based on separately
performed RANS simulations, the local perturbation magni-
tude p is determined according to Equation (5) by comparing
these RANS results and high-fidelity simulations.

3.3. Verification of ML model

The prediction accuracy of the RF should be evaluated on the
available data (see Section 3.2) with fitted hyperparameters
(maximum tree depth = 15, minimum sample count = 10,
maximum number of features = 7, number of trees = 30)
based on leave-one-out-cross validation (not shown here).
Ten different scenarios ,combining individual flow cases
listed in Table 3 for training and testing purposes, serve as
verification of functionality and present the accomplishment
of the intended generalization of every model. Since the
target quantity p ranges between zero and one (due to the
construction of the equilateral triangle with an edge length

of one), the resulting RMSE values indicate less than 10%
absolute prediction error, except for scenario II.

Evaluating the accuracy of a trained ML model becomes
challenging when making predictions on flow cases without
accurate data. To build confidence in the model’s perfor-
mance, it is reasonable to compare the input feature spaces
of the training and testing data, which results in extrapo-
lation metrics. In this study, we apply the Kernel Density
Estimation (KDE) to determine the extrapolation metric,
measuring the distance between a test point m̃ and the train-
ing data feature set m(i) for i = 1, . . . , n with n as the
number of training data points

dKDE = 1− fKDE

fKDE + 1/A
(6)

whereby A =
∏n

i

(
maxj

(
m

(i)
j

)
−minj

(
m

(i)
j

))
for

j = 1, . . . , d. The probability density is estimated via

fKDE =
1

nσd

n∑
i=1

d∏
j=1

K

(
m̃j −m

(i)
j

σ

)
, (7)

with the number of features d, the bandwidth σ (deter-
mined by Scott’s rule (Scott, 2015)) and a Gaussian kernel
K (t) = 1/

√
(2π) exp

(
−t2/2

)
. The Gaussian kernel K

employed in the method ensures that as the difference be-
tween m̃j and m

(i)
j decreases, the output of K increases.

In simpler terms, Equation (7) yields higher values when
m̃ approaches a concentrated feature space of the training
data points, and vice versa. By normalizing the distance in
Equation (6), the metric effectively measures the distance
between m̃ and the training data with respect to a uniform
distribution. Consequently, when m̃ is close to a concen-
trated feature space of m

(i)
j , fKDE ≫ 1/A resulting in

dKDE approaching 0 (no extrapolation is required). Con-
versely, when fKDE is much smaller than 1/A, dKDE tends
to approach 1 (high extrapolation is required). This provides
users with the ability to assess the degree of extrapolation
required based on the characteristics of the training data set.

In our study, the converging-diverging channel flow case
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(a) Evaluated extrapolation metric taking into account the features q1, q2, q3, q7 and q8.
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(b) Model prediction error taking into account all 56 input features.

Figure 2. Spatial comparison between KDE metric and RF error for flow of converging-diverging channel (scenario I in Table 3

demonstrates the use of the extrapolation metric, while sep-
arate RF are trained on the different data sets. Key features
with significant importance for the training are considered
for calculating the KDE distance, determined using permu-
tation feature importance. Though, in the definition of the
KDE metric, all features are initially treated equally. The se-
lected five most important features are q8, q3, q7, q2 and q1.
Unlike previous work (Wu et al., 2017), we do not observe
a strong correlation between model accuracy in predicting
perturbation magnitude for the converging-diverging chan-
nel and the mean KDE distance for different training data
sets. (see Figure 3).
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Figure 3. Relationship between the RMSE of the prediction and
the mean of KDE metric for the converging-diverging channel
(standard deviation as horizontal bars). All features are considered
for the prediction and training of the RF models, while only q1, q2,
q3, q7 and q8 are used to compute dKDE.

The barycentric coordinates of the converging-diverging
channel and periodic hill in the DNS data cover similar
areas in the barycentric triangle. In contrast, the barycentric
coordinates for the wavy wall test case are predominantly
located in the lower range of the triangle. Consequently, the

distance in barycentric coordinates, as the target quantity,
tends to have more frequent values within a similar range
for the converging-diverging channel and periodic hill. This
difference could explain the reduced prediction error when
training on the periodic hill compared to the wavy wall.
Wu et al. (2017) also stated that the correlation between
accuracy and the extrapolation metric is weaker when the
training set is very similar or very different from the test set,
which might be the case here as well.

Figure 2a presents the two-dimensional distribution of the
KDE metric, evaluated based on features q8, q3, q7, q2 and
q1. Although, some spatial correlated regions between
dKDE and the model errors in Figure 2b can be recognized,
their overall correlation is not strong (Pearson correlation co-
efficient ≈ 0.2). Unfortunately, areas characterized by lower
KDE metrics also exhibit less precise model predictions
(e.g. y/H ≈ 1 and x/H > 8).

However, it is important to note that the outcome of the
extrapolation metric heavily relies on the chosen set of
features as all features are equally weighted. Therefore,
it is reasonable to evaluate the metric only on a subset of
important features for the RF.

4. Conclusion and Outlook
Our approach represents a hybrid framework that combines
a physics-based UQ methodology with data-driven ML. Us-
ing ML predicted, spatially varying perturbation strength
helps CFD practitioners to identify regions, in which the
turbulence model might be erroneous on the one hand.
Propagating these prediction to the RANS solver helps
to obtain data-driven, less conservative and nonetheless
physics-constrained uncertainty estimates for QoI on the
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other hand(Matha et al., 2023).
Additionally, we focused on important aspects in the field
of ML, such as the selection of features and evaluating
the accuracy of the model using a posteriori and a priori
approaches. In particular, the a priori estimation of ML
confidence based on the KDE extrapolation metric lacks
correlation with the prediction error globally and locally.
Nevertheless, we strongly believe that the evaluation of
ML credibility holds significant importance for forthcoming
CFD design optimization circles. Hence, it is imperative that
future research related to ML application for CFD design
optimization places emphasis on addressing this issue.

Broader impact
Numerical analysis based on flow simulations using soft-
ware has become increasingly important in industrial aero-
dynamic designs. These applications commonly involve
turbulent flows. Despite the significant increase in computa-
tional power over the years, achieving scale-resolving (high
fidelity) simulations for design optimization studies in com-
plex engineering designs remains a challenging task. The
accuracy of cost-effective RANS simulations, which heavily
rely on turbulence models, will continue to be the state-of-
the-art approach in the coming years. The primary objective
of this study is to consolidate the emerging methods in tur-
bulence model uncertainty quantification and combine them
with ML. An appropriate application of ML to enhance
the methodology to quantify turbulence model uncertainties
will pave the way towards reliability based design or virtual
certification.
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