
Combining Thermodynamics-based Model of the Centrifugal Compressors and
Active Machine Learning for Enhanced Industrial Design Optimization

Shadi Ghiasi 1 Guido Pazzi 2 Concettina Del Grosso 2 Giovanni De Magistris 1 Giacomo Veneri 1

Abstract
The design process of centrifugal compressors
requires applying an optimization process which
is computationally expensive due to complex an-
alytical equations underlying the compressor’s
dynamical equations. Although the regression
surrogate models could drastically reduce the
computational cost of such a process, the ma-
jor challenge is the scarcity of data for training
the surrogate model. Aiming to strategically ex-
ploit the labeled samples, we propose the Active-
CompDesign framework in which we combine
a thermodynamics-based compressor model (i.e.,
our internal software for compressor design) and
Gaussian Process- based surrogate model within a
deployable Active Learning (AL) setting. We first
conduct experiments in an offline setting and fur-
ther, extend it to an online AL framework where
a real-time interaction with the thermodynamics-
based compressor’s model allows the deployment
in production. ActiveCompDesign shows a signif-
icant performance improvement in surrogate mod-
eling by leveraging on uncertainty-based query
function of samples within the AL framework
with respect to the random selection of data points.
Moreover, our framework in production has re-
duced the total computational time of compres-
sor’s design optimization to around 46% faster
than relying on the internal thermodynamics-
based simulator, achieving the same performance.

1. Introduction and Related Works
Centrifugal compressors’ design is an extensive computa-
tional process as it requires the optimization of numerous
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design variables which are the starting point of software sim-
ulations of complex dynamical equations (Ju et al., 2021).

While engineering-powered software simulations are reli-
able solution to the end user due to the established technol-
ogy, they have more complex formulations due to higher
inter-dependency of system variables (Garg et al., 2010).

Surrogate modeling with Machine Learning (ML) models
for computer simulations enables reducing the computa-
tional cost and time required for a design simulation while
maintaining a desired performance in industrial applications
(Bicchi et al., 2022; Owoyele et al., 2022; Kim et al., 2010).
However, generating sufficient data points for training ML
models is a daunting task since it requires running exten-
sive software simulations. Therefore, without any strategic
sampling, the possibility to explore a larger design space is
limited.

Under such circumstances, the Active Learning (AL) strat-
egy is a powerful framework to alleviate the problem of
high quality annotation scarcity (Settles, 2012). AL is a ML
technique that allows the model to interact with an oracle
by queering the most important data for learning (Monarch,
2021). In industrial applications, AL can make the most of
resources by significantly reducing the amount of labeled
data for training ML models (Brevault et al., 2022).

Utilizing ML surrogate models in the industrial simulation
design setting has been explored by previous research. Kim
et al. implement surrogate modeling for optimization of a
centrifugal compressor impeller (Kim et al., 2010). How-
ever, without any strategic sampling, the research is done for
a limited design space. AutoML-GA (Owoyele et al., 2022)
is an application of an automated machine learning-genetic
algorithm coupled with computational fluid dynamics sim-
ulations for rapid engine design optimization. Chabanet et
al. (Chabanet et al., 2021) apply AL in Industry 4.0 context.
Moreover, Murugesan et al. (Murugesan et al., 2022) pro-
pose an AL framework for estimating the operating point
of a Modular Multi Pump used in energy field. Wang et al.
(Wang & Nalisnick, 2022) apply AL for multilingual finger
spelling corpora. Finally, see also (Reker, 2019) for some
practical considerations for active ML in drug discovery.
However, an AL based framework has not been explored
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for design optimization of centrifugal compressors. More-
over, most research have focused on offline evaluation of AL
strategies, while, in industrial settings the data is acquired in
real-time (Cacciarelli et al., 2022) and a deployable stream-
ing based AL framework is needed.

In this study, we present the ActiveCompDesign framework
for deployable AL based design optimization of centrifugal
compressors. We leverage on Gaussian Processes (GPs) as
deep surrogates of centrifugal compressor dynamics coupled
with the AL strategy with a design goal to reach the optimal
power absorbed by the machine. We perform extensive com-
puter simulations using our internal thermodynamics-based
model integrated with an optimization algorithm to generate
sufficient data samples for surrogate model training. We
then use this data to perform an offline AL algorithm with
GP surrogates as a proof of concept. We further deploy our
framework through an online AL simulation environment in
which the thermodynamics-based model and the ML-based
model interact in real-time using a stream-based AL strat-
egy. Our framework is currently in production. To the best
of our knowledge, no other study have combined compres-
sor’s thermodynamics-based models and ML to propose a
production-ready AI enhanced design optimization frame-
work for design optimization of centrifugal compressors.

2. ActiveCompDesign framework
2.1. Problem definition

We consider the optimization of the boil off gas process
of centrifugal compressors where the aim is to minimize
the absorbed power by the machine. This is currently
done based on a design optimization process on an inter-
nal thermodynamics-based simulator. Since the analytical
equations underlying this physical process is complex and
computationally expensive, we aim to strategically run the
thermodynamics-based simulator during the optimization
process with the minimum number of queries to reach the
desired power.

We do this within the ActiveCompDesign framework by
integrating a regression surrogate model of the physical
process throughout the optimization process to benefit from
a faster calculation of the system’s response. However,
due to the uncertainties produced by the surrogate model,
we want to rely on the actual physical process equations
to obtain reliable outputs when the ML surrogate model
produces high uncertainties in prediction. In the following
subsections we provide formulation for surrogate modeling
of the design optimization process and the implemented
offline and online AL framework.

2.2. Surrogate modeling and active learning

Let x ⊂ Rdin be the input set where d is the number
of design parameters chosen by the expert engineer and
y ⊂ Rdout is the desired output. A collection of N number
of runs of the thermodynamics-based simulator, will result
in a finite number of pairs Dtrain = (xn,yn)

N
n=1 which

is considered as the training data. These pairs represent
sampled inputs and outputs of a complex analytical function
y = f(x) which is encoded in the simulator. The aim of sur-
rogate modeling is to estimate a function f̂ : Rdin → Rdout

which should be as close as possible to the true function
f . We aim to condition the parameters of f̂(θ) through
f̂(x, θ|Dtrain) = ŷ,∀x ∈ B : ŷ ∼ y where B is the
bounded subspace in R. In design optimization we look
for those values of x leading to the minimum y. Therefore,
by integrating the surrogate model into the optimization
algorithm we aim to:

min| ∼ y subject tof̂(x, θ|Dtrain) = ŷ,∀x ∈ B : ŷ ∼ y
(1)

In the ActiveCompDesign framework, our design parame-
ters (x) are a set of 12 flow coefficient rates corresponding
to different compression stages. Each coefficient is bounded
between a minimum and maximum value designed by the
expert engineer. The output is the total absorbed power (P)
calculated by the thermodynamics-based simulator. There-
fore, a single objective optimization algorithm is performed
to reach a desired P .

2.3. Offline ActiveCompDesign framework

We gather data by running N number of runs of the
thermodynamics-based model during an optimization pro-
cess selected by the expert engineers to obtain a baseline
minimum power. Given this collected dataset (DStart

t ) com-
prising of a set of flow coefficents as x and power as P ,
we train a regressor f̂Start on a small pool of labeled data
(DPool

t ). Throughout the AL process the regressor and the
original dataset get updated resulting in f̂Up and DUp

t . The
selection of the new observations to be labeled by the simu-
lator to be considered for the new training dataset is obtained
using query strategies formulated based on the regressor.

We particularly choose GPs (Williams & Rasmussen, 2006)
as the surrogate regression model thanks to their high per-
formance in mapping input-output relationship in our study
and their Bayesian structure (A list of regression models
tested in our data set and a comparison of their perfor-
mance is in the Appendix). A GP is defined by its mean
function µ(x) and a Kernel function computing the co-
variance function between datapoints K(xi, xj), therefore
f̂ ∼ GP(µ(xi),K(xi, xj)).

Within the GP regression framework we are able to compute
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Algorithm 1 Online ActiveCompDesign framework
1: Input: Flow coefficients (X), Bounded space of flow

coefficients (B), Number of iterations for pre-training
(NPT ), Number of total iterations (Ntot)

2: Output: Power absorbed by the machine (P)
3: Initialize X= arbitrary initial flow coefficient values.
4: for i = 1 to NPT do
5: Get the input (X) from the optimizer within (B).
6: Compute the power P based on thermodynamics-

based model (PPhys).
7: Create DPretrain

8: Train the pre-trained GP model (GPpt) on this train-
ing set.

9: Compute the uncertainty threshold Ub based on GP
posterior variances of previous samples.

10: end for
11: for i = NPT + 1 to Ntot do
12: Get the input (X) from the optimizer within (B).
13: Compute the power calculated from GP (PGP ), un-

certainty (PGP ) from GPpt.
14: if Uncertainty (PGP ) < Ub then
15: Return P=PGP

16: Update Ub.
17: else
18: Return P=PPhys.
19: Update GPpt with the new data point.
20: Update Ub.
21: end if
22: end for

the posterior mean and posterior variance for the prediction
of each sample. To perform AL with GP we select the next
training sample based on the maximum variance (Kapoor
et al., 2007; Zhao et al., 2021; Yue et al., 2020; Zimmer et al.,
2018). For implementation of offline ActiveCompDesign
we rely on the ModAL library (Danka & Horvath, 2018).

2.4. Online ActiveCompDesign framework

With this approach we design a simulation environment
where the thermodynamics-based simulator, the optimizer
and the surrogate model can interact in real time after each
data streaming.

The primary difference between the online and offline frame-
work is that the labels of new observations can non longer
be queried in a pool based way. With real time streaming of
data points an instant decision should be made to whether
label the data points or to discard the sample for learning.

Since our optimization goal is to reach minimum power
(P) with less expensive computational effort but keeping
the reliability of the output, we rely on the GP surrogate
model only as an alternative model in case the uncertainty

Table 1. Computational time of the proposed framework compared
to the baseline thermodynamics-based-simulator. N shows the
number of iterations for pre-training and total number of runs are
the number of iterations for ActiveCompDesign to achieve the
minimum baseline power.

Number
of runs

Pre-training
time (s)

Total
time (s)

Thermodynamics
model (baseline) 4000 - 109080

ActiveCompDesign
(NPT =50) 200 2340 7180

ActiveCompDesign
(NPT =100) 160 4680 5040

ActiveCompDesign
(NPT =150) 120 7020 6280

of the prediction is high. To this end, we consider a maxi-
mum number of iterations (NPT ) for the optimizer and the
thermodynamics-based simulator to interact to generate an
initial labeled dataset DPretrain = (xn,yn)

Ntot

n=1 . We then
train a surrogate model based on GPs and consider the mean
of the posterior variances of the predictions as the uncer-
tainty threshold (Ub) for the next iteration. We examine
if this replicated simulation is able to achieve comparable
performance in suggesting optimal design parameters for
obtaining the minimum power. Our thermodynamics-based
simulator and the code for the framework in this paper are
proprietary. More details of the online framework is re-
ported in algorithm 1.

3. Results and Discussion
3.1. Offline ActiveCompDesign framework

To generate the dataset for training and evaluating the GP
surrogate model, we perform a Bayesian optimization using
GPs (from the Scikit-optimize library (Louppe, 2017)) on
top of our thermodynamics-based simulator of compressor
design. This optimization process has led to 4000 runs in
12 dimensional input parameter space which constructs our
labeled dataset.

We select the surrogate GPs’s hyper-parameters by perform-
ing a grid search hyper-parameter selection based on cross
validation performance (Bergstra et al., 2011). The best
performing model is achieved with the Matern kernel with
length scale of 0.75 and ν of 0.5 (refer to (Williams & Ras-
mussen, 2006) for formulation of the Matern kernel).

We perform model training with AL and compare the re-
sults with uniformly random acquisition of the samples as
the baseline. Figure 1 reports the regression performance
metrics (i.e., Root Mean Squared Error (RMSE), R-sqaured,
Mean Absolute Percentage Error (MAPE) and Max error
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Figure 1. Comparison of performance metrics of surrogate modeling with Gaussian Process regression model by selecting the samples
with random acquisition with respect to active learning framework. The vertical bars for each sample show the standard deviation of the
performance metric as a result of uncertainty for prediction.

as more samples are queried for training based on random
selection and AL. We observe that the uncertainty-based
query strategy leads to a much greater decrease of RMSE
and MAPE metrics with less samples compared to the ran-
dom sampling. This has lead to a clear improvement of error
achieving almost the full-dataset performance by relying on
only around 30% of labeled data points for training. More-
over, the model’s goodness of fit quantified by R-squared
has a faster increase using the AL strategy compared to the
random selection.

As through GPs, we are able to obtain the standard deviation
of prediction (σ), we also consider the regression perfor-
mance for y+σ and y-σ where y is the predicted value for
each sample. As the plots in Figure 1 show, there are high
variations in regression performances with random selec-
tion, while with AL, this variation exists only for few initial
samples and it disappears as the samples strategically grow
in number.

3.2. Online ActiveCompDesign framework

We evaluate the results of the deployed streaming-based AL
framework based on the total number of runs required for
achieving the baseline performance and the computational
cost associated with it. In this regard, we consider different
simulations where in each simulation NPT number of initial
iterations is needed to pre-train the surrogate model. We
compare these results in Table 1. The baseline model is
the thermodynamics-based simulator where it achieved a
desired minimum power through 4000 iterations lasting for
around 30 hours. These results show a trade-off between

the number of runs to interact with thermodynamics-based
model and the total number of iterations for the whole frame-
work to achieve the desired P . For the ActiveCompDesign
simulators, the highest computational cost is the pre-training
cost where an interaction with oracle is needed. The simula-
tor with 100 iterations for pre-training with a total number of
160 runs have taken the least total time of simulation with an
improvement of around 46% decrease in total computational
time compared to the thermodynamics-based model. All
our experiments have been performed using Nvidia- DGX1
with 8x Tesla P100 GPUs and 20-core dual Intel CPUs.

4. Conclusion
The benefits of combining active ML methods with physical
models underlying compressor’s dynamics are large for de-
sign optimization applications including faster computations
and more accurate design solutions. However, the trade-
off between performance and computational power has to
be carefully evaluated for the specific design application.
Moreover (see also (Pardakhti et al., 2021)), the adoption of
AL methods poses significant challenges in many practical
applications, such as lack of data, discontinuous space of
exploration and measurement error.

The results obtained from offline and online ActiveCompDe-
sign show that integrating ML in compressor’s simulators is
viable for production ready application on the energy sector.
Indeed, our framework is currently working in a produc-
tion environment. For future research we will expand this
framework for wider design optimization applications and
improve the monitoring of the deployed model.
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5. Impact Statement
The inclusion of ML models into an internal
thermodynamics-based model in our study offers a
significant positive impact on various aspects of design
optimization process in the turbo-machinery industry,
including performance improvement, code optimization and
enhancement of user experience. However, it is important
to address the negative impacts such as privacy concerns
and the potential inaccuracies in model prediction generated
by dataset distribution shift and other factors.
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A. Appendix
A.1. General overview of the ActiveCompDesign framework

AI based Surrogate Model

Labeled Dataset
Pool Set

Compressor Software

High Uncertainity

Optimizer

Input 

Range

Selector

Input 

Range

Compressor Software

Figure 2. General pipeline of ActiveCompDesign framework.

A.2. Surrogate modeling selection

In order to obtain an AI based surrogate model of the compressor’s designer software, we rely on state-of-the-art supervised
regression models to map the input-output relationship. Moreover, we select those regression models where we are able
to obtain a quantification of the uncertainty of the prediction. Here a comparison of the performance of all tested models
is listed 2. For random forests, gradient boosting and extra tree regressors we consider 100 numbers of estimators for
training. For GPs we use a Matern kernel with parameters described in the text. We observe that GPs have achieved the best
performance among all the models.

Table 2. Model development performance.

MODEL RMSE Max Error R Squared MAPE

RANDOM FOREST 18937.12 112618.01 0.84 0.0003
GAUSSIAN PROCESS 4412.71 53286.78 0.99 0.00002
GRADIENT BOOSTING 16919.41 50417.80 0.87 0.0002
EXTRA TREE REGRESSOR 18413.44 106056.33 0.85 0.0003


