
Learning Green’s Function Efficiently Using Low-Rank Approximations

Kishan Wimalawarne 1 Taiji Suzuki 1 2 Sophie Langer 3

Abstract
Learning the Green’s function using deep learning
models enables to solve different classes of partial
differential equations. A practical limitation of
using deep learning for the Green’s function is
the repeated computationally expensive Monte-
Carlo integral approximations. We propose to
learn the Green’s function by low-rank decom-
position, which results in a novel architecture to
remove redundant computations by separate learn-
ing with domain data for evaluation and Monte-
Carlo samples for integral approximation. Using
experiments we show that the proposed method
improves computational time compared to MOD-
Net while achieving comparable accuracy com-
pared to both PINNs and MOD-Net.

1. Introduction
The Green’s function is a well-known method to solve and
analyze Partial Differential Equations (PDE) (Evans, 2010;
Bebendorf & Hackbusch, 2003). Recently, deep learning
models have been applied to learn the Green’s function
enabling to obtain solutions for both linear and nonlinear
PDEs (Luo et al., 2022) as well as to learn PDEs in irreg-
ular domains (Teng et al., 2022). Luo et al. (2022) further
demonstrated that deep learning models can parameterize a
class of PDEs compared to learning a specific PDE.

The MOD-Net (Luo et al., 2022) uses the Green’s function
approximation by using a neural network and Monte-Carlo
integration to parameterize solutions for PDEs. A limi-
tation of the MOD-Net is that the approximation of the
Green’s function by Monte-Carlo integration leads to high
computational costs due to their repeated evaluations for

*Equal contribution 1Department of Mathematical Informatics,
The University of Tokyo, Tokyo, Japan 2Center for Advanced Intel-
ligence Project (AIP), RIKEN, Tokyo, Japan 3Faculty of Electrical
Engineering, Mathematics, and Computer Science, University of
Twente, Enschede, The Netherlands. Correspondence to: Kishan
Wimalawarne <kishanwn@gmail.com>.

Accepted after peer-review at the 1st workshop on Synergy of
Scientific and Machine Learning Modeling, SynS & ML ICML,
Honolulu, Hawaii, USA. July, 2023. Copyright 2023 by the au-
thor(s).

each domain element. In this research, we propose to ex-
tend MOD-Net with low-rank decomposition of the Green’s
function. The proposed model results in a two network
architecture, where one network learns on the domain el-
ements to be evaluated and other network learns over all
the Monte-Carlo samples, hence, avoid redundant repeated
computations of Green’s function at each domain element.
Using experiments with the Poisson 2D equation and the lin-
ear reaction-diffusion equation we show that our proposed
method is computationally feasible compared to MOD-Net,
while achieving comparable accuracy compared to PINNs
(Raissi et al., 2017) and MOD-Net. Additionally, we show
that our proposed method has the ability to interpolate within
the solution space as a neural operator similar to MOD-Net.

2. Learning Green’s Function by MOD-Net
Let us consider a domain Ω ⊂ Rd, a differential operator L,
a source function g(·) and a boundary condition ϕ(·), then
a partial differential equation can be represented as,

L[u](x) = g(x), x ∈ Ω

u(x) = ϕ(x), x ∈ ∂Ω.

For a linear PDE with the Dirichlet boundary condition
ϕ(·) = 0, we can find a Green’s function G : Rd×Rd → R
for a fixed x′ ∈ Ω as follows:

L[G](x) = δ(x− x′), x ∈ Ω

G(x, x′) = 0, x ∈ ∂Ω,

which leads to a solution function u(·) as

u(x) =

∫
Ω

G(x, x′)g(x′)dx′. (1)

Recently developed MOD-Net (Luo et al., 2022) proposes
to learn the Green’s function by using a neural network. It
uses a neural network Gθ1(x, x

′) with parameters denoted
by θ1 to replace the operator G(x, x′) of (1). Given a set
SΩ consisting of random samples from Ω, the Monte-Carlo
approximation of the Green’s function integral (1) results in
the following:

uθ1(x; g) =
|Ω|
|SΩ|

∑
x′∈SΩ

Gθ1(x, x
′)g(x′). (2)

Submission and Formatting Instructions for Syns & ML at ICML 2023

MOD-Net (Luo et al., 2022) also proposes of a nonlinear
extension of the above as

uθ1,θ2(x; g) = Fθ2

(
|Ω|
|SΩ|

∑
x′∈SΩ

Gθ1(x, x
′)g(x′)

)
, (3)

where Fθ2 is a neural network (θ2 representing parameters).

It has been shown (Luo et al., 2022) that Green’s function
can learn as an operator for varying g(·) to parameterize a
class of PDE. Following (Luo et al., 2022), let us consider
K different parametarizations of a PDE class by specifying
gk(·) for k = 1, · · · ,K. Let SΩ,k and S∂Ω,k are domain
elements from the interior and boundary, respectively, for
each k = 1, . . . ,K. Then the objective function for MOD-
Net for the formulation in (2) is given as

RS =

1

K

∑
k∈[K]

(
λ1

1

|SΩ,k|
∑

x∈SΩ,k

∥L[uθ1(x; g
k)](x)− gk(x)∥22

+ λ2
1

|S∂Ω,k|
∑

x∈S∂Ω,k

∥uθ1(x; g
k)∥22

)
, (4)

where λ1 and λ2 are regularization parameters. Notice that
when K = 1 the above objective function learns a specific
instance of a PDE.

A major limitation with MOD-Net is the computational
bottleneck due to the Monte-Carlo approximation of the in-
tegrals (2) and (3). The repeated summation by elements of
SΩ with respect to each domain element in (4) can become
both computationally costly and redundant.

3. Proposed Method
We propose to extend MOD-Net with low-rank presentation
of the Green’s function to remove redundant computations
and improve computational feasibility.

First, we put forward the following approximation for low-
rank decomposition of the Green’s function from Bebendorf
& Hackbusch (2003). For any 0 < ϵ < 1 sufficiently small
and R ≥ cd⌈log(ϵ−1)⌉d + ⌈log(ϵ−1)⌉, and D1, D2 ⊂ Ω,
Bebendorf & Hackbusch (2003) have given decomposition
with functions vi(·) and wi(·), i = 1, . . . , R as

GR(x, y) =

R∑
i=1

vi(x)wi(y), x ∈ D1, y ∈ D2, (5)

such that

∥G(x, ·)−GR(x, ·)∥L2(D1) ≤ ϵ∥G(x, ·)∥L2(D̂1)
, (6)

where D̂1 ⊂ Ω a set slightly large than D1.

We now apply the above low-rank decomposition (5) of
the Green’s function to (2). We propose to learn functions
ui(x) and vi(x), i = 1, . . . , R using two neural networks
Fγ1

: Rd → RR and Hγ2
: Rd → RR where γ1 and γ2

represent parameters. In practice, R can be problem and
data dependent, hence, may require to be considered as
a hyperparameter. Further, we assume that D1 = D2 =
D̂1 = Ω for (5) and (6) and there exist some neural network
that can learn a low-rank representation.

Next, we apply the learning of low-rank decomposition to
(2) which leads to the following expansion

uγ1,γ2(x; g) =
|Ω|
|SΩ|

∑
y∈SΩ

G(x, y)g(y)

≈ |Ω|
|SΩ|

∑
y∈SΩ

R∑
i=1

Fγ1
(x)iHγ2

(y)ig(y)

=
|Ω|
|SΩ|

R∑
i=1

Fγ1
(x)i

∑
y∈SΩ

Hγ2
(y)ig(y)

=
|Ω|
|SΩ|

Fγ1
(x)⊤

∑
y∈SΩ

Hγ2
(y)g(y)

 . (7)

The last step of (7) shows the separation of the learning with
Monte-Carlo samples from the set SΩ by Hγ2(·) and learn-
ing with each x by Fγ1(·). This separated learning helps to
avoid the computationally costly repeated evaluations in (2)
and (3) since we only need to compute the network Hγ2

(·)
once for all input x at each learning iteration.

Using the construction in (7) we propose two neural network
architectures to improve over (2) and (3). For simplicity,
we omit the factor |Ω|/|SΩ| due to its redundancy in the
learning process. Further, we assume that elements SΩ are
sampled once and fixed during the learning and prediction
processes.

We put forward DecGreenNet as a direct construction from
(7) with |SΩ| = P as

uγ1,γ2(x; g) = Fγ1(x)
⊤

P∑
i=1

Hγ2(yi)g(yi). (8)

Next, we construct a nonlinear extension of MOD-Net (3)
with the low-rank decomposition following (7). Here we
remove the summation on the right and arrange its elements
as a concatenation. By introducing an additional neural
network Oγ3

: RP → R, we propose DecGreenNet-NL as

uγ1,γ2,γ3
(x; g) = Oγ3

(
Fγ1

(x)⊤concat
[
Hγ2

(y1)g(y1),

Hγ2
(y2)g(y2), . . . ,Hγ2

(yP)g(yP)
])

, (9)

Submission and Formatting Instructions for Syns & ML at ICML 2023

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
y

0.0

0.1

0.2

0.3

0.4

(a) Exact solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

0.1

0.2

0.3

0.4

0.5

(b) Predicted solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

−0.05

−0.04

−0.03

−0.02

−0.01

(c) Error

Figure 1: Interpolation results for Poisson 2D problem by DecGreenNet-NL for the parameter a = 15 (a) Exact solution, (b)
Predicted solution by DecGreenNet-NL and (c) Error

Method Network structure P Loss Time(sec)
PINNs [2, 64, 64, 1] - 3.5e-4 80.14
DecGreenNet Fγ1 = [2,512, 512, 512, 512, 50],Hγ2 = [2, 16, 16, 16, 1] 100 2.86e-4 117.95
DecGreenNet-NL Fγ1 = [2,64,64,64,64,64,50],Hγ2 = [2,64,64,64,50],Oγ3 = [100,1] 100 1.5e-3 550.45
MOD-Net [4, 128, 128, 128, 128, 1] 10 1.05e-3 721330

Table 1: Network structures, number of random samples, test loss, and computational times for a single instance learning of
Poisson 2D equation for a = 15 using PINNs, DecGreenNet, DecGreenNet-NL, and MOD-Net

where concat(· · ·) is an operation to concatenation of input
vectors. Note that when Oγ3

is replaces by a vector of ones
(Oγ3

= [1, 1, . . . , 1] ∈ RP), (9) becomes equivalent to (8).

Optimal neural architectures (layers and hidden units) of
Fγ1

, Hγ1
, and Oγ3

need to be discovered by hyperparameter
tuning. Additionally, R and P should be considered as
hyperparameters. Furthermore, the activation functions for
neural networks require higher-order differential capacity in
relation to the differential operators in the PDE. In general,
we use the activation function ReLUK(x) := max{0, x}K
where K ∈ N+.

4. Experiments
We experimented with PDEs used in (Luo et al., 2022) and
(Teng et al., 2022) to evaluate our proposed models.

4.1. Experimental Setup

In all our experiments we set λ1 = λ2 = 1 in the ob-
jective function (4) for all models. For both DecGreen-
Net and DecGreenNet-NL selected the layers and hidden
units of each neural network by hyperparameter tuning.
We selected layers from 1, . . . , 6 and hidden units from
2h h = 3, . . . , 6 for both Fγ1

(·) and Hγ2
(·) of (8) and (9).

For Oγ3
(·) we selected from hidden layers 0, 1, 2 and hid-

den units 4, 8, 16. We represent the network structure of
network of models by notation [in, h, . . . , h, out], in, out,

and h represent dimensions of input, output, and hidden lay-
ers, respectively. We experimented with R ∈ {5, 50, 100}.
We used PINNs as a baseline method by performing hyper-
parameter tuning for layers and hidden units varying from
1, . . . , 5 and 2h h = 3, . . . , 6, respectively. We also used
MOD-Net as a baseline method, however, we only used 10
random samples to approximate the Green’s function due
to high computational cost. We used the activation function
ReLU3(·) for all models. We used the Pytorch environ-
ment with Adam optimization method with learning rate of
0.001 and weight decay set to zero. All experiments were
conducted on NVIDIA A100 GPUs with CUDA 11.6 on a
Linux 5.4.0 environment. We provide the code at https:
//github.com/kishanwn/DecGreenNet.

4.2. Poisson 2D Equation

As our first experiment, we used the Poisson 2D problem
with multiple paramterizations under the same setting used
in (Luo et al., 2022). The Poisson 2D problem for the the
domain of Ω = [0, 1]2 is specified as

−∆u(x, y) = g(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω.

where g(x, y) = −a(x2 − x + y2 − y). The analytical
solution of the above problem is u(x, y) = a

2x(x−1)y(y−
1). In (Luo et al., 2022), multiple parameterizations of the
Poisson equation is specified by setting different values for
a. Following a similar setting as in (Luo et al., 2022), we

https://github.com/kishanwn/DecGreenNet
https://github.com/kishanwn/DecGreenNet

Submission and Formatting Instructions for Syns & ML at ICML 2023

−1.0
−0.5

0.0
0.5

1.0 −1.0
−0.5

0.0
0.5

1.0

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

0.1

0.2

0.3

(a) Exact solution

−1.0
−0.5

0.0
0.5

1.0 −1.0
−0.5

0.0
0.5

1.0

0.0

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

(b) Predicted solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

−0.08

−0.06

−0.04

−0.02

0.00

(c) Error

Figure 2: Comparison between the exact solution and predicted solution by DecGreenNet of the reaction-diffusion equation
(a) Exact solution, (b) Predicted solution by DecGreenNet and (c) Error.

Method Network structure P Loss Time (sec)
PINNs [2,128, 128, 128, 128, 128,1] - 2.6e-4 99.48
DecGreenNet Fγ1

= [2,512, 512, 512, 512, 512,50], Hγ2
= [2,32,32,32,50] 300 7.76e-5 355.25

DecGreenNet-NL Fγ1 = [2, 256, 256, 256, 256, 256, 50], Hγ2 = [2, 64, 64, 64, 64, 50] 300 2.70e-4 1075.24
Oγ3 = [300,1]

MOD-Net [4,128,128,128,1] 10 1.26e-4 23696

Table 2: Network structures, number of random samples, test loss, and computational times for the linear reaction-diffusion
equation using PINNs, DecGreenNet, DecGreenNet-NL, and MOD-Net

used a := ak = 10k where k = 1, · · · , 10 which lead to
g(x, y) := gk(x, y) = −ak(x

2−x+y2−y), k = 1 . . . , 10.

We found that DecGreenNet-NL with
Fγ1

= [2, 256, 256, 256, 256, 256, 50], Hγ2
=

[2, 64, 64, 64, 64, 50], and Oγ3 = [100, 1] provided
the best solution. From the learned model, we interpolate
the solution for the Poisson 2D equation with a = 15. The
low error of the interpolated solution in Figure 1 shows
the operator learning capability of our method, hence, the
ability to learn parameterization for a class of PDE.

As our second experiment with Poisson 2D, we conducted
experiments to evaluate solutions for a single instance of
the Poisson 2D equation with a = 15 (K = 1 in (4)). Table
1 shows the details on learning with PINNs, MOD-Net, and
single instance learning by DecGreenNet and DecGreenNet-
NL. Both our proposed methods obtained lower values for
test loss compared to PINNs and MOD-Net, in addition to
the significantly small time compared to MOD-Net.

4.3. Reaction-Diffusion Equation

We experimented with the linear reaction-diffusion equation
(Teng et al., 2022) in the domain Ω ∈ [−1, 1]2 specified as

L(u) = −∇ · ((1 + 2x2)∇) + (1 + y2)u (10)

The exact solution is u(x, y) = e−(x2+2y2+1). From both
Table 2 and Figure 2, we observe that DecGreenNet obtains

a good accuracy for learning the linear reaction-diffusion
function with moderate computational time.

5. Broader Impact
We believe that the computational advantages and opera-
tor learning capability of our proposed method would be
conducive to solving important problems in science. A
limitation of our method is the considerable amount of hy-
perparameters that needed to be tuned to find the optimal
neural architectures. We do not know any negative impacts
from our proposed methods.

6. Acknowledgement
TS was partially supported by JSPS KAKENHI (20H00576)
and JST CREST. KW was partially supported by JST
CREST.

7. Conclusion and Future Work
We provide a computationally feasible low-rank model to
learning PDEs with Green’s function. Theoretical analy-
sis such as convergence bounds for our model is open for
future work. Further extensions of our model to solve high-
dimensional PDEs is another future direction.

Submission and Formatting Instructions for Syns & ML at ICML 2023

References
Bebendorf, M. and Hackbusch, W. Existence of H-matrix ap-

proximants to the inverse fe-matrix of elliptic operators with
L∞-coefficients. Numer. Math., 2003.

Evans, L. C. Partial differential equations. American Mathematical
Society, 2010.

Luo, Z. L., Yaoyu, T. Z., Weinan, E., Xu, J., Zhi-Qin, and Zheng,
M. Mod-net: A machine learning approach via model-operator-
data network for solving pdes. CiCP, 2022.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics informed
deep learning (part i): Data-driven solutions of nonlinear partial
differential equations, 2017.

Teng, Y., Zhang, X., Wang, Z., and Ju, L. Learning green’s func-
tions of linear reaction-diffusion equations with application to
fast numerical solver. In MSML, 2022.

