
Predicting the stabilization quantity with neural networks for Singularly
Perturbed Partial Differential Equations

Sangeeta Yadav 1 Sashikumaar Ganesan 1

Abstract
We propose SPDE-Net, an artificial neural net-
work (ANN) to predict the stabilization param-
eter for the streamline upwind/Petrov-Galerkin
(SUPG) stabilization technique for solving sin-
gularly perturbed differential equations (SPDEs).
The prediction task is modeled as a regression
problem and is solved using ANN. Three train-
ing strategies for the ANN have been proposed,
i.e. supervised, L2 error minimization (global),
and L2 error minimization (local). The proposed
method has been observed to yield accurate re-
sults and even outperform some of the exist-
ing state-of-the-art ANN-based partial differential
equation (PDE) solvers, such as Physics Informed
Neural Network (PINN).

1. Introduction
The solution of a convection-diffusion equation is required
by many applications to model physical phenomena which
involve the transfer of quantities like particles, energy, fluid,
etc. When the convection velocity is large in magnitude
as compared to the diffusion, the problem becomes a Sin-
gularly Perturbed Differential Equation, and the numerical
solution shows spurious oscillations. These equations have
a small perturbation parameter such that their solution ap-
proaches a discontinuous limit when the diffusion parameter
approaches the value Zero (Roos et al., 2008). Conventional
techniques such as the Galerkin FEM are inadequate to solve
SPDEs due to the presence of interior/boundary layers.

Stabilization techniques are often employed to inject extra
artificial diffusion in the equation so as to reduce the spu-
rious oscillations in the numerical solution (Yadav, 2023).
The numerical accuracy of any stabilization technique de-
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pends a lot on the stabilization parameter. It is challenging
to find an optimal value of the stabilization parameter. Many
research efforts have been made in this direction [(John et al.,
1998)].

Many neural network-based PDE solvers also exist in lit-
erature such as residual minimizing PINN networks. Nu-
merical solutions for SPDEs using PINN networks have
large numerical errors (Yadav & Ganesan, 2021), (Yadav
& Ganesan, 2019), (Yadav & Ganesan, 2022). So, both the
stabilized FEM and ANN-based PDE solvers have their limi-
tations. One way to improve both of these techniques would
be to use stabilized FEM with the stabilization parameter
predicted by ANN. This is the motivation for this current
research work. In the end, we will show that ANN-aided sta-
bilized FEM schemes perform better than pure ANN-based
PDE solvers.

In this research, we propose “SPDE-Net”: an artificial neu-
ral network (ANN) for predicting stabilization parameters
for solving SPDEs using streamline upwind/Petrov-Galerkin
(SUPG) technique. SPDE-Net combines the universal ap-
proximating abilities of ANN with the solving power of
FEM for solving SPDEs. The purpose of this work is to
aid conventional stabilization techniques with contempo-
rary methods of optimization and prediction. The paper is
organized as follows: Section 2 reviews the existing stabi-
lization and machine learning techniques for FEM. Here we
highlight the contributions and the novelty of the proposed
technique. Section 3 explains mathematical preliminaries
required for the understanding of current work, such as the
convection-diffusion equation, its weak formulation and
SUPG stabilization. Section 4 explains the proposed tech-
nique, network architecture and learning methods. Section
5 gives details of the learning experiments conducted and
the metrics used for evaluation. Section 6 shows results and
analysis while comparing the methods. Section 7 concludes
the current research and hints its further scope for extension.

2. Related Work
2.1. Streamline Upwind Petrov Galerkin(SUPG)

Many stabilization techniques have been developed such as
SUPG [(Brooks & Hughes, 1982)], Local Projection Sta-
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bilization (LPS), and Subgrid Viscosity (SGV). SUPG is a
residual-based very popular stabilization technique and is
the focus of this article. In this technique, a residual-based
term is generally added to the weak form of the equation,
only in the direction of streamline, so there remains no cross-
wind diffusion. Usually, the residual term is multiplied with
a user-chosen coefficient called the stabilization parameter
which impacts the accuracy of the numerical solution very
much. Knowing an optimal value of the stabilization param-
eter is very important as adding more diffusion can result
in extra smearing of layers at the same point, adding less
will show up oscillations in the numerical solution. The
lower numerical accuracy of the SUPG scheme for SPDEs
boils down to the unavailability of an optimal stabilization
parameter.

2.2. Machine Learning in FEM

Now machine learning is quite useful in scientific comput-
ing. Many pieces of research have stated ANN to be a strong
candidate (Yadav et al., 2016) for solving unsolved problems
of scientific computing leveraged by its universal approxi-
mation abilities and free control over the hyperparameters.
It can be successfully used for solving PDEs [(Lagaris et al.,
1998)], [(Sirignano & Spiliopoulos, 2018)] and learning
PDEs from data by injecting data observations in PDE mod-
els [(Raissi et al., 2017)]. In another work, [(Hesthaven &
Ubbiali, 2018)] has proposed POD-NN which uses ANN in
the interpolation step in order to develop an ANN-aided non-
intrusive Radial Basis(RB) method using proper orthogonal
decomposition. In [(Capuano & Rimoli, 2019)], a smart
finite element method is proposed that directly maps the
element-based input and output to reduce the computational
costs involved in solving large-scale systems of equations.
However, in both of these papers, FEM was not part of the
deep learning architecture but was only used for generat-
ing the dataset or to speed up one or more numerical steps
of FEM. To the best of our knowledge, there has been no
study that trains an end-to-end deep learning model involv-
ing FEM as part of the computational graph itself. In this
work, the software framework has two parts: one uses ANN
to predict the stabilization parameter(τ ) and the other uses
FEM to solve the partial differential equations (PDE) using
that predicted τ . Integrating these two solvers/libraries is
the most challenging part since most of the FEM packages
do not generate a computational graph and even if they per-
form there is hardly any existing software that has variables
that can store the gradients of the functions operated on any
variable. Gradients remain a significant requirement for per-
forming any deep-learning task. In this study, we have used
an interface to stitch the computational graphs generated
by a FEM package (DOLFIN [(Logg & Wells, 2010)]) and
a deep learning framework (PyTorch). In similar research
for Discontinuous Galerkin(DG) [(Discacciati et al., 2020)],

the numerical solution is taken as the input to the neural
network. This limits its applicability to the cases where the
solution is identified in advance. To overcome this, we have
considered equation-based input features. In another work
[(?)], the stabilization parameter was predicted by reduc-
ing the residual of the equation, here we have attempted to
minimize the L2 error instead to get better performance. To
summarize, we make the following contributions through
this work:

• Developed an Artificial Neural Network(ANN) based
supervised and L2 error minimizing (L2 EM) tech-
niques for predicting stabilization parameter for
Streamline Upwind Petrov Galerkin(SUPG) Tech-
nique.

• Developed a training dataset based on the equation
coefficients and demonstrated the prediction of global
and local variants of stabilization parameter τ with
ANN.

• Showed that NN-aided FEM solvers solve SPDE with
lesser numerical error than that with pure neural net-
work solvers such as PINNs

3. Preliminaries
In this section, a convection-diffusion problem with a bound-
ary layer is presented. Further, the SUPG finite element for-
mulation is derived. We will use standard notations Lp(Ω),
W k,p(Ω), Hk(Ω) = W k,2(Ω), where 1 ≤ p < ∞, k ≥ 0,
for the usual function spaces and Sobolev space respectively.
(·, ·) will denote the inner product in the L2(Ω) space. |a|
stands for the Euclidean norm of a vector a ∈ Rd, where
d = 1, 2.

3.1. Convection Diffusion Problem

Let Ω be a bounded domain in R. Consider a convection-
diffusion equation: find u(x) : Ω → R subject to

−ϵu′′(x) + bu′(x) = f(x) for x ∈ (0, 1)

with u(0) = L, u(1) = R
(1)

where u(x) is the unknown scalar function, ϵ is a small
positive diffusion coefficient, b is convection coefficient and
f is a given source term, L and R are given boundary values.
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Figure 1. Schematic diagram of SPDE-Net: An end-to-end deep
learning+FEM framework for solving SPDE

3.2. Weak Formulation

In this section, the weak formulation of eq. (1) is derived.
Let V = v ∈ H1

0 (Ω). Multiply eq. (1), with a test function
v ∈ V and do integration by parts on the higher order term.
As an output, the weak formulation of eq. (1) will be to find
u ∈ H1(Ω) such that for all v

a(u, v) = (f, v) (2)

where the bilinear form a(·, ·) : H1(Ω) ×H1
0 (Ω) → R is

defined by

a(u, v) =

∫
Ω

ϵu′v′dx+

∫
Ω

bu′vdx (3)

(f, v) =

∫
Ω

fvdx (4)

3.3. SUPG Stabilization

As the Galerkin solution is unstable for convection-
dominated problems, we are adding the SUPG stabilization
term proposed by (Brooks & Hughes, 1982). The residual
R(u) of eq. (1) is

R(u) = −ϵu′′ + bu′ − f (5)

It has been added to the discrete form. Now, the modified
weak form is to find uh ∈ Vh such that:

ah(uh, vh) =f(vh) ∀ vh ∈ Vh

ah(uh, vh) =ϵ(u′
h, v

′
h) + (bu′

h, vh) +
∑
i∈Ωh

τi(R(u), bv′h)Ωh

(6)

τi is a user-chosen non-negative stabilization parameter.
Its value plays an important role in the quality of the ap-
proximated solution. A very large value of τ can lead to
unexpected smearing, whereas a low value will not sup-
press the spurious oscillations. So an optimal value of the
stabilization parameter is required to control oscillations
and smearing both properly. As mentioned in [(Madden
& Stynes, 1997)], literature does not offer a standard for-
mula for τi for higher-dimensional problems. So we have

attempted to predict the value of τ using deep learning
for one-dimensional problems to develop the theory and
experimentation as a base for solving higher-dimensional
problems later. Following is an existing formula for τ .

For local Peclet number, Pe =
bh

2ϵ
;

τ =
h

2b
(coth (Pe)− 1

Pe
);

(7)

where h is the mesh size. This formula is only applicable
to equations with constant convection coefficients. It is not
directly extendable to the higher dimensions, but it is quite
informative for developing a more generalized technique
using ANNs. From this formula, we could deduce that the
dependent variables which will be used as input features to
the proposed neural network, essentially the stabilization
parameter τ depend on the (ϵ, b, h).

4. SPDE-Net: Predicting SUPG stabilization
parameter

The problem of approximating the stabilization parameter
has been moulded into a regression task. For this, the τ
is predicted using ANN with input features {ϵ, b, h}. Two
types of loss functions are considered for training the net-
work. One is the supervised loss(calculated from the value
of τ ) which is used as a baseline and the other is a L2 er-
ror(calculated from the value of u) loss. For an ith training
sample,

τ̂i(θ) = Gθ(ϵi, bi, hi), (8)
ûi(θ) = uSUPG(ϵi, bi, hi, τ̂i(θ)), (9)

θ∗supervised = argmin

N∑
i=1

loss (τ̂i(θ), τi) , (10)

θ∗L2EM = argmin

N∑
i=1

loss (ûi(θ), ui) , (11)

where, Gθ is θ parametrized SPDE-Net, ûi(θ) is the SUPG
solution of eq. (6), τi is stabilization parameter (eq. (7)),
and N is the number of training examples. We have to learn
G by finding optimal θ∗ through iterative back-propagation
of loss. The end-to-end approximation process is shown
schematically in Figure (3).

4.1. Network architecture

The network architecture is shown in Figure (1). The neural
network model consists of three fully connected layers with
tanh non-linearity. As part of pre-processing, Pe is calcu-
lated for each input {ϵ, b and h} in the input normalization
step given below. The network outputs normalized τ̂norm
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which is re-scaled to get the actual τ̂ .

Input to the neural network: Pe =
bh

2ϵ
(12)

Output of the neural network: τ̂norm (13)

Re-scaled output: τ̂ = τ̂norm
h

b
(14)

The obtained τ̂norm is, thereafter, used to run testing experi-
ments as explained in the further sections.

4.2. Supervised learning

The supervised learning model uses RMSE between pre-
dicted τ and the standard τ (eq. (7)) as a loss function.
This is a regression task which does not use output sigmoid
activation. This model cannot be extended to the higher
dimensions as the value of τ is not generally known, es-
pecially in higher dimensions. It serves as an important
baseline to assess the performance of the proposed L2 error
minimization technique.

4.3. L2 error minimization( (L2 EM)

L2 error minimization is used in situations where the ex-
pression for τ is unknown but the analytical solution for
the equation is known for training the network. Here the
L2 error between the û(τ̂) and the solution u is used as the
loss function. We propose two variants of the stabilization
parameter for this case as following:

• Global Stabilization Parameter (τg): A single predicted
τ̂ is considered for the whole domain Ωh.

• Local Stabilization Parameter (τloc): Each cell of the
domain will have a local τ . It is to understand if having
a non-uniform τ improves the accuracy of the numer-
ical scheme. Two values τ̂loc1 and τ̂loc2 are predicted
by the network for non-boundary and boundary layer
region respectively. These values are then localised
across the entire domain using matrix transformation.

5. Experiments
This section represents the constituents of the experimental
setup. It details about the training, testing and validation
dataset. Hyper-parameters obtained from ablation study
are given followed by the evaluation metrics considered for
training the SPDE-Net.

5.1. Dataset

We have considered the examples of steady singularly per-
turbed partial differential equations as given in eq. (1).
A dataset has been generated by sampling the values of
ϵ, b and h from the ranges mentioned in Table (4) and f = 1

for supervised training and L2 EM. For each example, the
domain Ω is discretized using P1 finite element with mesh-
size h. 20% samples from the training set are separated for
validation.

5.2. Hyper-parameters

The base model is trained from scratch using PyTorch. The
network is trained using mini-batch gradient descent and
Adam optimizer. The learning rate is controlled with stepLR
scheduler by starting with a high initial learning rate, which
is gradually reduced by a factor of gamma after a specified
step size depending on the type of training.

6. Results
In this section, the performance of each technique is com-
puted for 1D problems on the test and validation dataset.
Supervised technique, L2 EM (τg) and L2 EM (τloc) tech-
nique have been compared in terms of RMSE error and the
L2 error. Perturbation analysis for each technique is done to
check the performance variation as we increase the pertur-
bation in the system by decreasing the value of ϵ for a given
equation.

6.1. Performance

Table (3) shows the performance of each technique on the
test and validation dataset. RMSE is not shown for L2 error
minimization(τloc) because in this case, the τ is not a scalar
value so calculating Euclidean distance is not possible. The
supervised technique performs best due to the availability
of ground truth. Both in terms of L2 error and RMSE, the
L2 error minimization(τg) technique is performing at par
with the supervised technique for both validation and the
test data. It shows that L2 error can also be used for training
loss as it achieves similar performance. It gives a reliable
alternative in the case of the unavailability of ground truth
for training the network for such problems.

6.2. Comparison with ANN-based PDE solvers

PINNs are neural networks-based PDE solvers trained by
minimizing the strong residual of the equation while encod-
ing hidden laws as prior information whereas the proposed
network aims to minimize the L2 error in the solution but
in a different manner. Essentially, it is developed over the
already established stabilized FEM technique. Hence it ex-
ploits the advantages of both the conventional stabilized
FEM technique and the contemporary ANN technique. One
good check of the performance of SPDE-Net will be to com-
pare its L2 error with that of PINNs. We have compared
the performance of the proposed network with the state-of-
the-art PINN [(Raissi et al., 2017)] networks and the error
comparison is shown in Table (2). SPDE-Net outperforms
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the residual-based PINN network for solving singularly per-
turbed PDEs for all mesh sizes. Among the proposed neural
network-based variants L2 error minimization(τg) technique
gives the least error. It shows that L2 error is a better choice
than residual for loss. Also reducing the RMSE error of τ is
as good as reducing L2 error of the solution with respect to
that of the analytical solution of the given problem.

7. Conclusion
In this paper, we presented a case for using deep learning
to predict stabilization parameters for SUPG for solving
singularly perturbed partial differential equations. It is suc-
cessfully tested for various examples. The proposed network
outperforms the state-of-the-art residual-based PINN net-
works for solving singularly perturbed differential equations.
Based on the results obtained in this paper, we can say it is
better to combine the neural networks with the capability
of FEM instead of solely relying on neural networks for
solving SPDEs. L2 EM performs at par and slightly better
than the supervised technique and thus is useful for training
when the formula for stabilization parameter is not even
known for the training.

Table 2. Comparison of SPDE-Net(Supervised and L2 EM) with
PINN in terms of L2 error in the numerical solution produced by
these techniques for test case ϵ = 1e− 11, b = 1.0 and different
h )

h Supervised L2 EM PINN
τg τloc

6.25 e−2 6.70 e−6 2.72 e−6 5.06 e−5 8.01 e−3
3.13 e−2 4.74 e−6 1.92 e−6 3.58 e−5 7.94 e−3
1.56 e−2 3.35 e−6 1.36 e−6 2.53 e−5 7.92 e−3
7.81 e−3 2.37 e−6 9.60 e−7 1.79 e−5 7.92 e−3
3.91 e−3 1.70 e−6 6.90 e−7 1.29 e−5 7.92 e−3
1.95 e−3 1.20 e−6 4.88 e−7 9.09 e−6 7.92 e−3

Broader impact
The integration of neural networks in SPDEs has broader
implications for the advancement of machine learning ap-
plications in the physical sciences. This interdisciplinary
collaboration facilitates the development of hybrid method-
ologies that leverage the strengths of both classical mathe-
matical modeling and data-driven techniques. As a result,
it paves the way for enhanced computational frameworks
that can handle a wide range of problems beyond SPDEs,
contributing to progress in fields like fluid dynamics, elec-
tromagnetics, climate modeling, and more.

Furthermore, the utilization of neural networks for SPDEs
showcases the potential of artificial intelligence in trans-
forming traditional approaches to scientific research. The

paper’s methodology may inspire further investigations into
applying machine learning to other intricate mathematical
problems, accelerating progress in computational science
and pushing the boundaries of our understanding of complex
physical phenomena.
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A. Appendix
A.1. Performance

Table 3. Performance comparison of different techniques for validation and test dataset
Validation data Test data

Technique ||û(τ̂)− u||L2(Ωh) ||τ̂ − τ ||L2(Ωh) ||û(τ̂)− u||L2(Ωh) ||τ̂ − τ ||L2(Ωh)

Supervised 5.13 e−6 2.79 e−7 7.88 e−6 3.72 e−7
L2 EM(τg) 5.00 e−6 3.33 e−6 7.76 e−6 4.83 e−7
L2 EM(τloc) 6.42 e−5 NA 1.70 e−4 NA
PINN 8.11 e−3 NA 7.82 e−3 NA

A.2. Dataset Table 4. Dataset properties
Supervised/L2 Error-Minimization

Parameters Training/validation dataset Testing
ϵ 33 samples in

[
10−16, 104

]
32 samples in

[
10−16, 10−1

]
b {1.0, 1.1, 1.2, 1.3, 1.4} {1.5, 1.6, 1.7}
h−1 {30,35,40,45,60,70,80, {50}

90,100,500}
Boundary (L,R) {−1, 0, 1} {−1, 0, 1}
Total data samples 4950 288

A.3. Evaluation Metrics

Root Mean Square Error(RMSE) with standard τ (eq. 7) and L2 error between û(τ̂) and u (eq. 17) are the two metrics used
to quantitatively evaluate the performance of the proposed technique. N is the no. of examples in the dataset.

RMSE =

√∑N
i=1(τ̂ − τ)2

N
(15)

L2 error: ||eh||0 = ||u− uh||L2(Ω) =

(∫
Ω

(û(τ̂)− u)2dx

) 1
2

(16)

A.4. Qualitative analysis

For testsample ϵ = 1 e−11, b = 1.0, f = 1, (which is a sample from critical dataset) the solution generated from Supervised,
L2 EM(τg) and L2 EM(τloc), PINN network are compared with the analytical solution (17) in Figure (2). All the proposed
techniques show minimal oscillations and are quite close to the analytical solution as compared to the solution produced by
PINN networks.

Figure 2. Qualitative analysis of solutions
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A.5. Analytical solution of the equation

u(x) = αx+
(R− L− α)[exp(−β(1−x))− exp−β ]

1− exp−β
+ L

where α =
f

b
β =

b

ϵ

(17)

A.6. Training Pipeline

Figure 3. Overview of training algorithm


