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Abstract
Wind energy is a leading renewable energy source.
It does not pollute the environment and reduces
greenhouse gas emissions that contribute to global
warming. However, current wind characteriza-
tion is performed at a resolution insufficient for
assessing renewable energy resources in differ-
ent climate scenarios. In this paper, we advocate
the use of deep generative models for wind field
representation learning. In contrast to existing ap-
proaches, we formulate the generative model as an
explicit function of the spatial coordinate, thereby
learning a continuous representation of the wind
field, which can extrapolate from discretized data
with demonstrated generalizability. We extend
the concept of conditional neural fields by encod-
ing the local turbulent wind properties into latent
variables. Such resolution enhancement enables
essential localized analyses of renewable energy
resources’ long-term economic sustainability.

1. Introduction
With the increased reliance on wind-based energy gener-
ation in modern power systems, it is critical to properly
capture the dynamic behaviors of climatological wind when
planning power system operation (Pryor et al., 2020; Veers
et al., 2019; Manwell et al., 2010). However, due to the low
viscosity of air, nearly all winds appear turbulent by nature,
particularly in the troposphere, which houses the majority of
critical systems such as infrastructure, ecological systems,
and power plants. Many studies have been conducted in
order to develop global climate simulation models that pro-
vide an accurate characterization of wind (Al-Yahyai et al.,
2010; Cassola & Burlando, 2012; Zhang et al., 2022). A
typical climate model used in wind data generation has a
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resolution of around 1◦, or approximately 100 kilometer
(km) near the equator. This resolution is insufficient for
accurately assessing renewable energy resources, which typ-
ically necessitates a resolution finer than 10 km, preferably 2
km (Cox et al., 2018). As a result, we can only achieve sub-
optimal utilization and development of renewable energy
farms.

Downscaling is a common method for obtaining local scale
projections. Widely used downscaling methods can be clas-
sified into two classes: (1) dynamical methods and (2) sta-
tistical methods. The first class of methods typically utilizes
numerical models to simulate atmospheric processes at a
higher resolution within a limited geographical area. Re-
gional climate models, for example, or limited-area models,
use large-scale and lateral boundary conditions from climate
models to generate higher resolution outputs (Wood et al.,
2004; Murphy, 1999; Maraun et al., 2015). These models
are commonly resolved at the 0.5◦ latitude and longitude
scale and are used to parameterize physical atmospheric
processes. The second class of methods employs statisti-
cal approaches to establish empirical relationships between
climate-resolution climate variables and local climate, i.e.,
learning a low-resolution to high-resolution mapping from
historical climate observations (Jakob Themeßl et al., 2011;
Tang et al., 2016; Maraun et al., 2010). One critical limita-
tion of such downscaling methods is that they typically fail
to explicitly account for spatial dependencies in both low-
and high-resolution climate data.

Alternatively, machine learning (ML) methods have been ac-
tively investigated in many recent studies to quickly generate
high-resolution climate data (Stengel et al., 2020; Kurinchi-
Vendhan et al., 2021; Yang et al., 2023). The process is
known as image super-resolution (SR). The goal is to build
a ML model – in most cases, a deep learning model – to ac-
curately generate a high-resolution (HR) image output given
low-resolution (LR) input image. If we are going to use the
predictions of these neural network-based SR models to
make decisions, we must ensure that their SR outputs are ac-
curate and realistic. But what essentially is a climatological
wind field? It is, by definition, a continuous physical prop-
erty. However, when a numerical model attempts to process
a climate field, it must first store and represent the field as
2D/3D arrays of pixels/voxels, with resolution controlling
the trade-off between complexity and precision. Despite the
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need for an accurate continuous representation of climate
fields, no general methods are available to date (Liu et al.,
2020; Fukami et al., 2019; Güemes et al., 2021; Yousif et al.,
2021; Kim et al., 2021; Luo & Kareem, 2021).

In this paper, we concentrate on the problem of learning
continuous generative representations of wind data in a SR
formulation to address the aforementioned shortcoming of
existing methods. To summarize, the contributions of this
article are as follows:

• A novel implicit neural network (INN) model for a
continuous representation of climate data, such as tur-
bulent wind fields.

• We encode climate data into a latent space and use ran-
dom Fourier feature mapping for spatial coordinates.
This improves characterization of high-frequency sig-
nals.

• We experimentally demonstrate that the proposed INN
model allows for fast and accurate super-resolution up
to ×20 times, without requiring such high-resolution
data during the training phase.

2. Method
In the weather and climate data set, a geophysical variable
can be thought of as a scalar function of some physical
variables, such as latitude, longitude, and time. Often, the
underlying field generation process lacks a well-defined an-
alytic form. Thus, functions are described by parameters Θ
that climate scientists hand-craft and optimize. We refer to
such a field as: v = FΘ(s), where v denotes the geophysi-
cal variable (in this paper, it is the wind speed), s denotes the
spatial coordinate, and F (·) denotes a numerical weather
model. Climate data is typically index sampled functions
with discrete values, such as camera pixels, or discrete func-
tion parameterizations with voxels or discretized level sets.
In light of this, the super-resolution task is commonly de-
fined as follows:

vhigh = M(vlow) (1)

Ideally, we want to access the climate property not just at
fixed discrete locations, but at every possible point s ∈ R2.
Furthermore, we argue that such a super-resolution formu-
lation (Eq. 1) ignores the inherent physics encapsulated
in F (·). As a result, we present an alternative viewpoint:
we compress the low-resolution data by training a neural
network F̂ (·) to capture the desired climate property as a
continuous scalar function of spatial coordinates:

v = F̂ (s) (2)

Once the model has been trained F̂ ≈ F , we can use it to
make inferences for any continuous spatial coordinate in the
domain and generate vhigh at any resolution.

Aside from deep residual networks as the backbone, we uti-
lized two additional tools to ensure that the neural network
model can capture high-frequency signals in wind data and
maintain good performance across different samples. The
techniques we adopt for such a new continuous represen-
tation learning formulation are known as Projection and
Conditioning.

Projection. Because the modeling function F̂ (·) is implic-
itly defined, continuous, and differentiable, current MLP-
based network architectures have emerged as a powerful
tool for representation learning. However, such implicit neu-
ral representations are incapable of modeling fine-grained
signals, a phenomenon known as spectral bias in the lit-
erature (Basri et al., 2020; Rahaman et al., 2019). Fourier
feature mapping has recently been discovered to be effective
in overcoming the spectral bias of coordinate-based MLPs
towards low frequencies by allowing them to learn at much
higher frequencies (Tancik et al., 2020). As a result, we
design a projection layer in our proposed network in order
to better capture climatological wind details. The goal of
this projection layer is to normalize the spatial coordinates
and transform them into Fourier features. We specifically
test three types of embeddings:

(1) Basic: γ(s) = [cos(2πs), sin(2πs)]T. (2) Positional:
γ(s) =

[
. . . , cos

(
2πσj/ms

)
, sin

(
2πσj/ms

)
, . . .

]T
for

j = 0, . . . ,m − 1. For each dimension, we will use log-
linear spaced frequencies, with the scale σ determined by a
hyperparameter sweep for each task and dataset. (3) Gaus-
sian: γ(s) = [cos(2πBs), sin(2πBs)]T, where cos and sin
are used elementwise. B is a blocked diagonal random ma-
trix where the non-zero values are sampled independently
and randomly from a Gaussian distribution with a zero mean
and standard deviation of σ.

Conditioning. For a climate data set, it is neither feasible
nor practical to train a unique neural network for each data
instance. Instead, we want a model that can represent a
collection of instances, learn their inherent and intercon-
nected properties, and embed them in a low-dimensional
latent space (Xie et al., 2022; Chen et al., 2021). To that
end, as shown in Fig. 1, we introduce a latent vector z,
which can be thought of disentangled input-dependent crit-
ical information by encoding the available data instance,
as an additional conditioning input to our proposed neural
network for continuous super-resolution. Conceptually, the
projected spatial coordinates are integrated with this latent
vector z to generate data-dependent continuous wind fields.
Formally, F̂ (·) stated in Eq. 2 is now a function of a latent
code zi and a query of 2D locations, which outputs the wind
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Figure 1. Schematic diagram illustrating the proposed implicit neural network (INN) model. The model is comprised of three key
components: (1) a convolutional neural network-based encoder, trained to map an input image to a latent space; (2) a projection network
that maps input coordinates to Fourier features, achieved through techniques such as sinusoidal mapping; and (3) a series of fully
connected layers incorporating batch normalization and skip connections. By integrating these components, the INN model is capable of
representing discretized climate data in the continuous domain, enabling its presentation at an arbitrarily high resolution.

speed at that location for an instance indexed by i:

u = F̂ (s, zi) = F̂ (γ(s), ϕ(vi)), (3)

where γ(·) is the projection of the coordinates and ϕ(·) is
the encoder. This formulation allows F̂ (·) to model a set of
data instances with a single neural network by conditioning
the network output on a latent vector, which is generated
from the low-resolution data instance.

3. Experiments
Data set. The wind data was taken from the National Renew-
able Energy Laboratory Wind Integration National Database
(WIND) Toolkit (Draxl et al., 2015a;b). The WIND Toolkit
combines a meteorological data set provided by a meso-
scale model, a power data set, and a forecast data set. It
provides high spatial and temporal resolution wind power,
wind power forecasting, and meteorological data for over
126,000 locations across the continental United States dur-
ing a 7-year span. The simulated forecasts were developed
using the Weather Research and Forecasting Model, which
operates on a 2-km by 2-km grid with a 20-meter (m) res-
olution from the ground to 160 m above ground. The spa-
tial resolution of the WIND Toolkit is 2-km × 1-hour (hr)
spatio-temporal resolution. As a result, the wind data set
is 1602 (latitude) × 2976 (longitude) × 61368 (number of
instances), or almost 1.2 TB per wind component. We sam-
ple the data using standard baselines to make training and
validation more efficient and replicable to others (Stengel
et al., 2020). Wind test data is taken at a 4-hr temporal reso-
lution, with the first 1000 snapshots used for experiments.
The spatial resolution is reduced, and the final data set is
1500 × 2000 × 1000 in size, with each wind component
requiring 6 GB of RAM. Specifically, there are 800 training
instances, 100 validation instances, and 100 test instances
in the data set. We used bicubic interpolation to generate

a pair of low-resolution and high-resolution samples for
each instance. For example, suppose we set the size of the
input low-resolution sample to 75 × 100. The proposed
model’s super-resolution ability to scale from ×1 to ×20
can then be tested. We trained the model on common up-
scaling scales, from ×1 to ×5, then aggressively tested it
not only on in-distribution scales (×1 ∼ ×5) but also on
out-of-distribution scales (×10 ∼ ×20).

Implementation details. We utilize EDSR-baseline (ex-
cluding its up-sampling modules) as the encoder in our ap-
proach (Lim et al., 2017). The encoder consists of a single
main branch with 16 residual blocks, facilitating parameter
sharing across various upscaling ratios. The residual blocks
are configured with 3 × 3 kernels. The initial layer of the
encoder performs convolution and yields 64 feature maps.
To maintain range flexibility within the network, we have
excluded batch normalization layers from our network. This
is because batch normalization layers normalize the features,
thereby removing their range adaptability. In our decoding
function, we employ a 5-layer MLP with ReLU activation
and hidden dimensions set to 256. An Adam variant called
decoupled weight decay regularization is adopted as the
optimizer with a weight decay λ = 0.0001 (Loshchilov &
Hutter, 2019). All models are trained for 1, 000 epochs with
an initial learning rate of 0.001 that decays by γ = 0.995
every epoch. In the respective experiments, we used an
NVIDIA A100 GPU with 40GB HBM2 memory.

Evaluation Metrics. We have employed three measures to
evaluate model performance in addition to the mean squared
error (MSE)-based loss between prediction and target. First,
peak signal-to-noise ratio (PSNR) is defined as the ratio of
a signal’s maximum possible value (power) to the power of
distorting noise that affects the quality of its representation.
Second, the structural similarity index (SSIM) is a percep-
tual metric that evaluates the degradation of image quality
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Figure 2. Test results. The MLP model was tested with and without different encoding methods using uniformly sampled hyperparameters.
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(a) in-distribution sample

Figure 3. Model prediction performance is evaluated using in-distribution and out-of-distribution upscaling samples. The term out-of-
distribution encompasses not only the test data samples that were not employed during the training phase but also extends to a more
aggressive upscaling ratio (e.g., ×15) that was not utilized in the training process (e.g., ×3).

caused by data compression or transmission losses. Third,
the mean absolute error (MAE) is employed.

3.1. Embedding results

The objective of this experiment is to demonstrate the ef-
ficacy of embedding methods in learning high-frequency
signals. We experiment with four different models: (1)
MLP. (2) MLP + Basic Encoding. (3) MLP + Positional
Encoding. (4) MLP + Gaussian Encoding. The MLP archi-
tecture, which takes the form of 2 → 256 → 256 → 256 →
256 → 1, remains unchanged. It is worth noting that net-
work architecture and hyperparameter search are two of the
most important challenges and sources of innovation in deep
learning, which are mostly problem-specific and empirical.
Because we want to show how to use Fourier features-based
embedding methods to address the learning issue of high-
frequency signals, we will only focus on hyperparameter
tuning for encoding. Grid search is used to evaluate candi-
dates derived from a grid of parameter values specified by
the grid parameters. The frequency constant σ is sampled
from U [1, 50] in the case of positional encoding, and m,
which denotes the number of frequencies to map to, is sam-
pled from U [10, 50]. Meanwhile, in the case of Gaussian
encoding, the standard deviation is sampled from U [1, 50].
Fig. 2 shows the test loss (the lower the better) and the test
PSNR (the higher the better). The obtained results show that

positional/Gaussian encoding improves performance signifi-
cantly over basic encoding and the model trained without
encoding. The mean performance suggests that positional
encoding performs slightly better than Gaussian, at least
with the hyperparameters we tested. The Gaussian encoding
with hyperparameter σ = 15 provides the best performance,
whether measured by the loss value or the test PNSR.

3.2. Qualitative evaluation results

To quantify the effectiveness of the learned continuous rep-
resentation, we propose that, in addition to evaluating super-
resolution tasks of scales in training distribution, we addi-
tionally evaluate extremely large upscaling ratios that are
not in training distribution. Specifically, the upscaling ratios
are randomly sampled from the uniform distribution U [2, 5]
during the training period. During testing, the models are
evaluated on previously unseen instances with considerably
higher upscaling ratios sampled from the uniform distribu-
tion U [10, 20]. Fig. 3 shows a qualitative comparison. The
in-distribution sample is tested with an upscaling ratio of
3 and the out-of-distribution sample is tested with an up-
scaling ratio of 15. We can see from the visualization that
INN captures the macro- and meso-scale climate patterns
very well. For continuous learning, the first row of each
sub-figure in Fig. 4 shows the predicted high-resolution rep-
resentation with various upscaling ratios, and the second
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Figure 4. Qualitative illustration of learning continuous representation. The performance of the model is evaluated on a randomly selected
instance from the test dataset. Different upscaling ratios were tested, and the resulting prediction outcomes are displayed in the first row.
The second row showcases the original resolution data. By zooming in on the visualization of the wind speed data, we can observe the
effectiveness of the proposed continuous super-resolution INN model.

In-Distribution Performance Out-of-Distribution Performance
Linear Cubic Nearest INN Linear Cubic Nearest INN

PSNR ↑ 31.969 32.299 29.507 33.865 27.447 27.364 26.154 33.011
SSIM ↑ 0.8271 0.8347 0.7490 0.9762 0.7256 0.7321 0.6618 0.9744
MAE ↓ 0.0201 0.0193 0.0259 0.0192 0.0509 0.0505 0.0585 0.0197

Table 1. Performance assessment results in terms of PSNR (peak signal-to-noise ratio), SSIM (structural similarity index measure), and
MAE (mean absolute error). The best prediction performance is emphasized using bold font, where INN significantly outperforms all
other interpolation-based baselines.

row shows the corresponding low-resolution representation.
The results show that INN representation bridges the gap be-
tween discrete and continuous representations in 2D climate
data by providing a framework for naturally and effectively
exploiting information from image ground truths at various
resolutions.

3.3. Quantitative evaluation results

Table 3.1 compares our proposed INN to the other three
continuous super-resolution methods: bilinear, bicubic, and
nearest interpolation. The PSNR, SSIM, and MAE are cal-
culated. We compute prediction performance using different
upscaling ratios, as opposed to traditional fixed upscaling
ratio-based super-resolution. We tested 100 instances with
various upscaling ratios ranging from 2 to 5 (In-Distribution
Performance) as well as from 10 to 20 (Out-of-Distribution
Performance). It should be pointed out that the proposed
INN model outperforms all baseline interpolation methods,
particularly when tested on a high upscaling ratio taken from
the out-of-distribution range. Overall, the calculated results

show that INN can model complex wind signals by learning
a realistic approximation from low-resolution data.

4. Conclusion
In this work, we have proposed a coordinate-based deep
learning model for continuous super-resolution (SR) of cli-
mate data. We have specifically developed an implicit neural
network (INN) model for learning continuous, rather than
discrete, representations of climate data. Notably, our INN-
SR model only requires low-resolution samples as labels
rather than its high-resolution counterparts. The INN-SR
model, once trained with the WIND Toolkit, can generate
data of any size. We have demonstrated that a learned contin-
uous representation can generalize to much higher precision
than the training scales while maintaining high fidelity. We
have also tested the INN-SR model’s performance on un-
seen test data. The proposed INN-SR model significantly
outperforms standard interpolation-based SR approaches in
terms of accuracy and robustness.
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Broader impact
Broader impact Many physical systems and phenomena
occur on a continuous basis in nature, as we know. They
are formally characterized by partial differential equations
(PDEs), which reflect the continuous nature of the physical
systems. However, discretization is unavoidable during nu-
merical simulations. Our study has the potential to improve
the representation of current physical data. As a result, we
believe this study can benefit both the broader scientific
community and the general public in better understanding
the physical systems of interest.

Fairness and ethic issues Our work involves significant
analysis and experiments on datasets utilizing the WIND
Toolkit, with no concerns about personal identity or privacy.
As a result, our work is free of ethical and privacy con-
cerns. Furthermore, the evaluations have been performed
in a manner that guarantees fairness for all baselines and
methods.
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