
PySCFIPU: Repurposing Density Functional Theory to Suit Deep Learning

Alexander Mathiasen 1 Hatem Helal 1 Kerstin Klaser 1 Paul Balanca 1 Josef Dean 1 Carlo Luschi 1

Dominique Beaini 2 Andrew Fitzgibbon 1 Dominic Masters 1

Abstract
Density Functional Theory (DFT) accurately pre-
dicts the properties of molecules given their atom
types and positions, and often serves as ground
truth for molecular property prediction tasks. Neu-
ral Networks (NN) are popular tools for such tasks
and are trained on DFT datasets, with the aim
to approximate DFT at a fraction of the com-
putational cost. Research in other areas of ma-
chine learning has shown that generalisation per-
formance of NNs tends to improve with increased
dataset size, however, the computational cost of
DFT limits the size of DFT datasets. We present
PySCFIPU, a DFT library that allows us to iterate
on both dataset generation and NN training. We
create QM10X, a dataset with 108 conformers, in
13 hours, on which we subsequently train SchNet
in 12 hours. We show that the predictions of
SchNet improve solely by increasing training data
without incorporating further inductive biases.

1. Introduction
Density Functional Theory (DFT) is a widely used scien-
tific model that predicts molecular properties based on each
atom’s type and position (Kohn & Sham, 1965; Kohn, 1999;
Pople, 1999). It is the means of choice for molecular prop-
erty prediction as its accuracy is close to gold standard ex-
perimental measurement. However, DFT is computationally
expensive and recently, neural networks (NN) have become
a popular tool to approximate DFT at a much lower cost
with comparable accuracy (Gilmer et al. (2017)).

A common strategy to improve NN model accuracy is to in-
corporate inductive biases, e.g. positional encodings or aux-
iliary losses. However, research in other areas of machine
learning like vision (Zhai et al. (2022)) and large language
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models (Kaplan et al. (2020)) has shown that more data is
crucial in order to unlock the full potential of NN training.
Datasets in the molecular domain like QM9 (Ramakrishnan
et al., 2014), ANI1 (Smith et al., 2017) and PCQ (Nakata &
Shimazaki, 2017) contain 100k to 20M molecules, which is
considered small in the context of machine learning datasets.
This lack of data presents a bottleneck in molecular machine
learning and prevents foundation models from better under-
standing chemical space. Therefore, we developed a library
that allows us to decrease the time it takes to perform DFT
computations to generate significantly larger datasets.

The datasets QM9, ANI1, and PCQ computed chemical
properties using the DFT libraries Gaussian9 and GAMESS
(Frisch et al., 2009; Barca et al., 2020). Both excel at a broad
spectrum of computational chemistry tasks for systems with
hundreds of atoms. However, QM9, ANI1 and PCQ con-
tain molecules with at most twenty atoms. We introduce
PySCFIPU, a DFT library optimised for small sized chemical
systems (8-12 heavy atoms) that we used to create QM10X,
a dataset containing 100M examples with 10 heavy atoms.

We generated QM10X using Intelligence Processing Units
(IPUs) and find that they are inherently well suited for creat-
ing DFT datasets in two distinct ways:

1. IPUs have 940MB memory with 12-65TB/s bandwidth,
enough to perform small DFT computations without
relying on RAM with < 3TB/s bandwidth.

2. IPUs support Multiple Instruction Multiple Data
(MIMD) parallelism which simplifies the computation-
ally demanding Electron Repulsion Integrals (ERIs).

Main Contribution. PySCFIPU is tailored to the unique
needs of generating molecular datasets. Creating a DFT
dataset requires a number of distinct choices. Notable ex-
amples include DFT trade-offs (accuracy vs compute cost)
and how to sample from chemical space (Dobson, 2004).
In Table 1 we compare the choices made by the authors of
QM9, ANI1 and PCQ. While trade-offs in DFT have been
researched for decades, it remains unclear how these distinct
decisions impact subsequent deep learning models. There-
fore, we trained SchNet (Schütt et al. (2018)) on multiple
datasets that were created based on different sets of choices.
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Table 1. The authors of previous DFT datasets made different choices. It is not clear how these design choices impact subsequent deep
learning models. PySCFIPU allows us to investigate how choices made for the dataset creation impact deep learning, e.g., size of training
set, number of conformers, basis set, and on/off-equilibrium geometry (see Section 3). † used old version with CPU bottleneck.

Dataset Graphs Conformers Conformers
Graphs Basis Set XC Heavy Atoms Time Hardware

QM9 133.9k 133.9k 1 6-31G(2df,p) B3LYP ≤ 9 - CPU
PCQ 3.38M 3.38M 1 6-31G* B3LYP ≤ 20 >1 Year CPU
ANI1 57462 20M ∼ 348 6-31G(d) ωB97x ≤ 8 - CPU

QM8X (ours) 11.5k 10.53M ∼ 914 6-31G B3LYP 8 2451 Hours † IPU
QM11X (ours) 18.38M 18.38M 1 STO3G B3LYP 11 3667 Hours † IPU
QM10X (ours) 105.8k 104.6M ∼ 987 STO3G B3LYP 10 2968 Hours IPU

By publishing our code1 we hope to enable future research
into these choices by allowing researchers to iterate jointly
on dataset creation and model training.

Limitations. PySCFIPU is an ongoing research project and
still faces several challenges:

1. 940MB memory limits PySCFIPU to ≤ 12 heavy atoms
with a less accurate electron representation (STO3G).

2. Larger numerical errors due to float32 instead of
float64 (yet 7× lower than chemical accuracy 0.043eV,
see Figure 1).

3. The first simulation of a molecule with N atomic or-
bitals takes five additional minutes due to the ahead-of-
time compilation model used for IPUs (for our 104.6M
dataset we spent 3.19% time compiling).

Our current implementation supports restricted Kohn-Sham,
B3LYP functional (Becke, 1993; Stephens et al., 1994), no
interatomic force and the basis sets {STO3G, 6-31G}.

1.1. DFT Primer.

This subsection explains what a typical DFT library does.
The DFT inputs are atomic positions and atomic numbers
which are used to compute a matrix V. The DFT library
then solves the following matrix equation for (C, ϵ).[
V +T+ J(ρ(C)) +K(ρ(C)) + VXC(ρ(C))

]
C = SCϵ

ρ(C) = CDCT = ρρρ Dij =

{
2 if i = j ≤ Nelectrons/2

0 else

J(ρρρ)kl =
∑
ij

I2eijklρij K(ρρρ)il = −1

2

∑
jk

I2eijklρjk

Here I2e ∈ RN×N×N×N while {ρρρ,V,T,C,S, ϵ} are in
RN×N , (D, ϵ) are diagonal matrices and {ρ, J,K, VXC}
are functions with (N,N) matrices as input and output.2

Given a physical system, the algorithm proceeds in it-
erations. At iteration 0, we precompute (V,T,S, I2e)
and initialize C1. At iteration i, we compute (ρρρi =

1https://github.com/graphcore-research/pyscf-ipu
2See Lehtola et al. (2020) for physical interpretation of tensors.

ρ(Ci), VXC(ρρρi), J(ρρρi),K(ρρρi)), and then solve the above
equation for Ci+1 (which corresponds to a generalized
eigenproblem). If the iterations converge to self-consistency,
one attains a solution (C, ϵ) from which several properties
can be computed.3 DFT has two well-known trade-offs
between accuracy and compute time: (1) VXC attempts
to correct the approximation error between DFT and the
Schrödinger equation; hundreds of corrections exist such as
LDA (Dirac, 1930), B3LYP (Becke, 1993; Stephens et al.,
1994), (2) C represents molecular orbitals as a linear com-
bination of Gaussian functions; many such Gaussian basis
sets have been extensively studied (Pritchard et al., 2019).

2. PySCFIPU: Hardware Accelerating DFT
While some DFT libraries support hardware acceleration,
we found that QM9, PCQ and ANI1 were created on CPUs.
We suspect this is due to the difficulty of hardware accel-
erating DFT. We developed PySCFIPU, a hardware acceler-
ated version of PySCF optimized to generate DFT datasets.
The main differences between PySCF and PySCFIPU is that
PySCF is a general purpose electronic structure package for
CPUs, while PySCFIPU is specialized towards generating
DFT datasets with hardware acceleration.

IPU. The IPU is a hardware accelerator with 1472 cores
and 6 threads per core. All 8832 threads support MIMD
parallelism. Each core has access to 639kB of 65TB/s high-
bandwidth memory and 12TB/s to all other cores.

PySCFIPU. We based PySCFIPU on the open-source DFT
library PySCF (Sun et al., 2018). To utilize IPUs we ported
PySCF from NumPy to JAX (Bradbury et al., 2018), which
can target IPUs by translating JAX to XLA (Sabne, 2020).
This left two remaining parts in C: 4

1. libxc (Lehtola et al., 2018) computes VXC

2. libcint (Sun, 2014) computes (T,V,S, I2e)

3The HOMO-LUMO gap measures chemical reactivity defined
as ϵHOMO−ϵLUMO where HOMO and LUMO are integers denoting
the highest occupied and lowest unoccupied molecular orbitals.

4(Zhang & Chan, 2022) cleverly extends PySCF with AD by
using JAX to pair all C calls with gradient C calls (only for CPUs).

https://github.com/graphcore-research/pyscf-ipu
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Figure 1. Histogram of numerical errors (the energies were around −104 and HOMO-LUMO gaps were around 10).

Libxc. We only support the B3LYP functional. The energy
computation of B3LYP was implemented in JAX, which
allowed us to use JAX autograd to compute the B3LYP po-
tential. We use float32 instead of float64. JAX-XC (Zheng
& Lin) recently machine translated the libxc Maple files
to JAX. This may allow us support more functionals by
extending JAX-XC to float32.

Libcint. We implemented the computation of I2e by port-
ing the libcint implementation of the Rys Quadrature algo-
rithm from C to the IPU. The code implements a function
INT2E which is called many times with different inputs.
Each call can be done in parallel. However, the different
calls perform different computations making it tricky to
parallelise using SIMD. In contrast, using the IPUs MIMD
parallelism all 8832 IPU threads can independently compute
one call to INT2E in parallel. I2e satisfies an 8x symme-
try5 which, when exploited, (1) reduces bytes needed to
store I2e by 8x and (2) gives an 8x reduction in FLOPs
needed to compute K(ρρρ, I2e) and J(ρρρ, I2e) (usually com-
puted using np.einsum). To utilize the 8x symmetry we
implemented a custom einsum algorithm (the memory usage
of our current implementation can be improved as outlined
in Section 4).

Numerical Error of PySCFIPU. DFT libraries usually
use float64. This paragraph investigates our numerical er-
rors due to float32 and compares them to the needs of deep
learning datasets. We took a 10k uniform random sam-
ple from our QM10X dataset and recomputed DFT with
PySCF in float64. The mean absolute error of PySCFIPU
for converged6 molecules was 0.00605eV for energies and
0.00019eV for HOMO-LUMO gap, see Figure 1. Our
errors are larger than ∼ 10−8 in typical float64 DFT li-
braries. However, 0.006eV is 40× smaller than 0.25eV from
JaxSCF (Li et al., 2023).7 Neural networks like SchNet at-
tain 0.063eV HOMO-LUMO gap and 0.015eV for energy
predictions (Schütt et al., 2018). Our numerical error for

5I2eijkl = I2eijlk = I2ejikl = I2ejilk = I2ejilk = I2eklij = I2eklji =

I2elkij = I2elkji.
6Converged is defined as np.std(energies[-5:])>0.01 (reduced

from 105.8M to 104.6M).
7Their error seem to stem from approximating I2e using a grid

which we circumvent by using the IPUs MIMD parallelism.

HOMO-LUMO gap is thus 300x smaller than the errors
achieved by neural networks (but similar for energy). We
expect further engineering will decrease numerical errors.

Generating QM10X. We used RDKit (Landrum et al.,
2013) to add hydrogens to the 3M molecules Gener-
ated Data Bank with 10 {C,N,O, F} atoms (GDB10)
(Fink & Reymond, 2007; Fink et al., 2005). We se-
lected ∼100k molecules with ≤10 hydrogens and com-
puted 1000 conformers for each. DFT was then evaluated
on each conformer using PySCFIPU with the DFT options
B3LYP/STO3G with a 10-30k grid size.

Timing PySCFIPU. We used 304 IPUs to create the
104.6M QM10X dataset split over 19 POD16s. Our logs
recorded 2968 IPU hours of which 3.19% was spent com-
piling. All IPUs were done after 13 hours. The median
DFT time was 101.9± 21.3ms. Each IPU POD16 has two
physical EPYC CPUs with 240 vCPUs. On a POD16 for the
example molecule FC=C1C2CN2N=C1C=O we can do 82
DFTs/sec with PySCF and 228 DFTs/sec with PySCFIPU.

3. Generating Data To Train SchNet
Equilibrium vs Off-Equilibrium. Smith et al. (2017)
discussed training neural networks on equilibrium vs off-
eqilibrium molecules, that is, molecules in which the forces
acting on all nuclei are zero (equilibrium) or non-zero (off-
equilibrium). PySCFIPU allowed us to investigate whether
it is harder to train neural networks to predict HOMO-
LUMO gap for off-equilibrium molecules. We created
QM9F=0 by running PySCFIPU on the equilibrium atom
positions provided by QM9, and then created QM9F ̸=0 by
running PySCFIPU on off-equilibrium atom positions from
RDKit conformers. Our SchNet model attained 0.049eV
on QM9F=0, similar to 0.053eV on ”normal” QM9. Our
SchNet model performed worse at 0.123eV on QMF ̸=0,
see Figure 2(b). This seems to be in line with prior work:
Schütt et al. (2018) trained SchNet for 12 hours on 110k
QM9 equilibrium molecules, and 12 days on the 19M off-
equilibrium molecules. The off-equilibrium model trained
for less time was better (0.26 kcal/mol vs 0.47 kcal/mol).
Both suggest off-equilibrium prediction is harder, however,
more experimentation is needed to confirm this conclusion.
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(a)

(b) (c) (d)

Figure 2. (a) Profile of our DFT computation for ”Fc1nocnc(=O)c1=O” (b) SchNet performs similar on QM9 in STO3G and 6-31G(d2f,p)
for equilibrium molecules but worse for off-equilibrium prediction (c) SchNet improves on off-equilibrium prediction when increasing
size of dataset m (d) SchNet did not generalize from {10} atoms to {7, 9, 12}; it does generalize if we add {8, 11} to the training data.

Training SchNet on QM10X. We trained a 9M parameter
SchNet on QM10X using subsets with m = 10i conformers
for i = 4, .., 8. The validation MAE is visualized in Fig-
ure 2(c). Increasing m from m = 104 to m = 108 improved
validation MAE from 0.3484eV to 0.0486eV, comparable
to the 0.049eV of SchNet on QM9F=0. If off-equilibrium
prediction is harder, as argued in the previous paragraph,
it is intriguing that training a larger SchNet on more data
is capable of closing the gap. Notably, the scaling strategy
requires less human effort compared to augmenting neural
networks with additional inductive biases.

Generalizing To Different Number of Atoms. We cre-
ated five datasets with 7, 8, 9, 11, 12 atoms to test if SchNet
could generalize from 10 atoms to ̸= 10 atoms. The SchNet
trained on 108 molecules with 10 atoms did not generalize
to ̸= 10 atoms, see Figure 2(d). We augmented QM10X
with 8 and 11 atom molecules: 5M DFTs for GDB8 (1000
conformers per graph) and 18.38M DFTs from QM11X (1
conformer per graph). The SchNet trained on the result-
ing 127M conformers with 8, 10, 11 atoms generalized to
7, 9, 12 atoms, see Figure 2(d).

4. Scaling to Larger Molecules
The main limitation our of implementation is the fact that it
runs out of memory when N > 70. This limited us to use
≤ 12 atoms in STO3G with a small grid size (10-30k).

Current (Naive) Bottleneck. We can view I2e as a matrix
M ∈ RN2,N2

so K(ρρρ) = Mx where x = flatten(ρρρ). For
N = 70 we spend 173MB computing v = Mx. We repre-
sent M with the 8x symmetry as a list of matrices of size
(num integrals, integral size). M is split over all IPU cores
and never needs to move. We compute vi = Mx by copying
x for every thread allowing us to compute xi = Mthreadi

x
where Mthreadi

is the part of M stored on core i. The result
is then v =

∑
i xi. This uses N2 · num threads floats

(or 173MB). The memory consumption can be reduced to

173MB/N=2.47MB by splitting x into N batches each with
N floats. The current strategy was a stepping stone, the
main advantage is ease of implementation. Notably, prior
work disregarded this 8x symmetry at the cost of a 5-8x
slowdown (Zhang & Chan, 2022).

Recomputation. Instead of precomputing I2e we can re-
compute the entries of I2e whenever needed during the
simultaneous computation of K(ρρρ, I2e) and J(ρρρ, I2e). For
the case of Figure 2(a) it took 15.3M out of 105M cycles
to compute I2e. Recomputing I2e all 20 iterations would
increase cycle count from 105M to an estimated 395.7M
cycles (57.5ms to 216.8ms on a 1.825GHz Mk2 BOW).
Finally, if we also recompute the evaluation of the atomic
orbitals on the XC grid our memory consumption becomes
N2 + grid size · 4 +B, where B is the memory used while
(re)computing K(ρρρ, I2e) and J(ρρρ, I2e) (independent of N ).

Using Multiple IPUs. We exemplify our plan to paral-
lelize over 15GB SRAM in 16 IPUs following Figure 2(a).
The computation of I2e (Eletron Repulsion Integral) can
be split over 16 IPUs in the same way we already utilize
MIMD parallelism to split them over the 8832 threads. The
computation of K and J can also be split over 16 IPUs
with one REDUCE SUM of size N2. The remainder of the
computation can be repeated independently on each IPU.

5. Discussion.
Prior work usually falls in one of the following three cate-
gories: (1) DFT libraries, (2) DFT datasets, and (3) neural
networks trained on DFT datasets. This article touches on
all three, demonstrating how choices made for (1) and (2)
can impact (3). As the field turns towards training large
foundational quantum chemical models, we hope our work
will help generate sufficiently large datasets with billions (or
trillions) of molecules. Furthermore, we hope to allow re-
searchers to generate datasets specifically to fine-tune such
foundational models.
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6. Broader Impact.
Density Funtional Theory is used to design materials and
drugs. We hope that our work on dataset creation will
allow future research to create large foundational quantum
chemistry models, thereby accelerating the design of new
materials and drugs.
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