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Abstract
Biophysically detailed mathematical modeling of
cardiac electrophysiology is often computation-
ally demanding, for example, when solving prob-
lems for various patient pathological conditions.
Furthermore, it is still difficult to reduce the dis-
crepancy between the output of idealised mathe-
matical models and clinical measurements, which
are usually noisy. In this work, we propose a
fast physics-based deep learning framework to
learn complex cardiac electrophysiology dynam-
ics from data. This novel framework has two
components, decomposing the dynamics into a
physical term and a data-driven term, respectively.
This construction allows the framework to learn
from data of different complexity. Using in sil-
ico data, we demonstrate that this framework can
reproduce the complex dynamics of transmem-
brane potential, even in presence of noise in the
data. This combined physics-based data-driven
approach may improve cardiac electrophysiology
modeling by providing a robust biophysical tool
for predictions.

1. Introduction
Computational cardiology is a multi-disciplinary field that
has seen extensive progress in the past decade. In particular,
recent advances in numerical analysis and the development
of virtual patient-specific models (known as ‘digital twin’)
have allowed researchers to address critical challenges re-
lated to limitations of clinical methods routinely employed
to diagnose arrhythmia, as well as to help planning the
best therapy on an individual basis. However, in order to
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build such accurate predictive heart models, one needs to
select the most suitable theoretical framework, balancing
the degree of mathematical complexity needed for the spe-
cific problem studied, the correct parameterisation of model
from measurements, and the validation of predictions.

Despite the fact that biophysically detailed cardiac elec-
trophysiology (EP) models (such as (Ten Tusscher et al.,
2004)) can accurately reproduce electrical behaviour of car-
diac cells, these models are complex and computationally
expensive, and have many hidden variables which are impos-
sible to measure, making model parameters difficult to per-
sonalise. The phenomenological models (FitzHugh, 1961;
Nagumo et al., 1962; Aliev & Panfilov, 1996; Nash & Pan-
filov, 2004; Mitchell & Schaeffer, 2003), simplified models
derived from biophysical models, have fewer parameters and
are therefore especially useful for rapid computational mod-
elling of wave propagation at the organ level. However, they
are less realistic and therefore need a complementary mech-
anism to fit them to the measured data. Machine learning
and in particular deep learning (DL) approaches could help
providing such a correction mechanism. The combination
of rapid phenomenological models and machine learning
components could then allow the development of rapid and
accurate models of transmembrane dynamics (as in (Her-
rero Martin et al., 2022; Fresca et al., 2021; Sahli Costabal
et al., 2020)). Nevertheless, the majority of existing cou-
pled approaches use a high-fidelity physical model as a core
component of its structure. As a result, fitting those models
to the real data may not only be computationally expensive,
but also difficult especially in order to properly deal with the
frequently observed large discrepancies between simulated
and real data.

To address this critical limitation, here we propose a Our
framework’s name framework to learn complex cardiac elec-
trophysiology dynamics, based on a fast low-fidelity (or
incomplete) physical model. This framework has two main
components which decompose the model dynamics into a
physical term and a data-driven term, respectively. The data-
driven DL component is designed such that it captures only
the information that cannot be modeled by the incomplete
physical model. The proposed framework closely follows
the approach of Yin et al. (2021). However, in contrast to
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this previous work (which considers fully-observable dy-
namics and simple test use cases), cardiac EP dynamics
have a high complexity and represent simultaneously mul-
tiple underlying processes. Furthermore, most cardiac EP
models lack measurements for some of the model variables,
which requires inferring the dynamics from incomplete ob-
servations only, making a model partially-observable.

Fig. 1 presents the general framework of our approach.
Training amounts to identifying the physical model parame-
ter (inverse problem) and learning the neural network param-
eters (direct problem) together. After training, the model
can be used for forecasting at multiple horizons.

Simple EP
model  Fp

DL model  Fd

+ ODE Solver(XT, Fp+ Fd, (T+1:T+   ) )

 min   || Fd || 

 s t  dXt / dt = (Fp+Fd )(Xt) 
Fp, Fd

Estimated physical
parameters

Data Forecasted
data

Physical / DL cooperation treaning

θp

Figure 1. General Our framework’s name framework scheme. Dur-
ing the training phase two-component framework learn the param-
eters for the physical (Fp) and the data-driven (Fd) components
from data. Then via an ODE solver the framework can forecast
further the learned dynamics.

2. Learning Framework
In order to learn the cardiac EP dynamics (Xt), in this work
we solved an optimisation problem via our physics-based
data-driven Our framework’s name framework. This particu-
lar framework combines a physical model (Fp) representing
an incomplete description of the underlying phenomenon
with a neural network (Fd), where the latter complements
the physical model by capturing the information that cannot
be modeled by the physics-described component:

min
Fp∈Fp,Fd∈Fd

∥Fd∥ subject to

∀X ∈ D,∀t, dXt

dt
= F (Xt) = (Fp + Fd)(Xt).

(1)

Assuming that Fp is a Chebyshev set, Propositions 1 and 2
from Yin et al. (2021) guarantee the existence and unique-
ness of a minimising pair for (1).

Specifically, our incomplete physical model is the two-
variable (v, h) model (Mitchell & Schaeffer, 2003) for car-
diac EP simulations, as described by equations (2). The
variable v represents a normalised (v ∈ [0, 1]) dimension-
less transmembrane potential, while the “gating” variable h
controls the repolarisation phase (i.e., the gradual return to

the initial resting state):

∂tv = div (σI∇v) +
hv2(1− v)

τin
− v

τout
+ Jstim

∂th =

{
1−h
τopen

if v < vgate
−h

τclose
if v > vgate

(2)

where Jstim is a transmembrane potential activation func-
tion, which is equal to 1 during the time the stimulus is
applied (tstim) in a certain stimulated area.

This physical model has been successfully used in patient-
specific modelling (Relan et al., 2011), covering general EP
dynamics. Furthermore, in contrast to the very detailed
ionic/cellular models, this model is flexible in terms of
spatial and temporal steps set in the numerical analysis.
Thus, assuming the initial conditions for this system (2)
v(t = 0) = 0 and h(t = 0) = 1 we can compute an approx-
imation of h for any time point t by employing a simple
integration scheme.

In the experiments presented later (see Section 3), Fp is the
set of models spanned by the R.H.S. of the equations above
for varying variables σ, τin, τout, τclose. This is a finite di-
mensional vector subspace which is indeed Chebyshev, thus
falling under the assumption guaranteeing theoretical exis-
tence and uniqueness of a minimising pair.

The data-driven component (Fd) of the framework was im-
plemented via a neural network. The choice of a neural
network depends on the application problem and the dimen-
sion of the data. In this work, we used a ResNet network (He
et al., 2016), because it could accurately reproduce complex
cardiac EP dynamics (Ayed et al., 2019; Kashtanova et al.,
2021). However, a simpler neural network could also be
used for more rapid computations.

In Our framework’s name framework the physical (Fp) and
the data-driven (Fd) components are trained simultaneously,
using automatic differentiation tools provided by the Py-
torch library (Paszke et al., 2019). This insures the finding
of the best minimising pair for (1) determined by the set of
parameters θ = (θp, θd). The ’Loss function’ (L) in training
phase consisted of 2 parts: trajectory-based loss (Ltraj) and
loss on norm of Fd, being represented as following:

L(θ) = λ ∗ Ltraj(θ) +
∥∥∥F θd

d

∥∥∥
= λ ∗

N∑
i=1

T/∆t∑
h=1

||X(i)
h∆t − X̃

(i)
h∆t(θ)||+

∥∥∥F θd
d

∥∥∥ (3)

where each state

X̃
(i)
h∆t(θ) =

∫ X
(i)
0 +h∆t

X
(i)
0

(F θp
p + F θd

d )(Xs) dXs



Physics-based deep learning framework to learn and forecast cardiac electrophysiology dynamics

was calculated from the initial state X(i)
0 via a differentiable

ODE solver (Chen et al., 2018; 2021). The Our framework’s
name training uses algorithm similar to Yin et al. (2021).

Additionally, in order to train simultaneously the physical
and the data-driven components of Our framework’s name,
we implemented the Laplace operator in (2) with a simple
finite-difference scheme.

3. Experiments and Results
In order to test the performance of our Our framework’s
name framework and to further show its capability to repro-
duce complex transmembrane potential dynamics simulated
via a biophysically detailed cardiac EP model, we chose
two types of experiments. First, we tested the ability of
the framework to learn the complex dynamics of transmem-
brane potential including a case where noise is present in the
data. Second, using test data samples, we showed that our
framework is able to generalise to new conditions, outside
of its training environment.

The details of data collection used for the experiments are
presented in detail below.

3.1. Data collection

To evaluate our method, we used a dataset of transmembrane
potential activations simulated by employing a monodomain
reaction-diffusion equation and the Ten Tusscher – Panfilov
ionic model (Ten Tusscher & Panfilov, 2006), which repre-
sents twelve different transmembrane ionic currents. The
simulations were performed using a spatial step of 0.2 mm
and a time step of 1 ms (similarly to those used in the
original model (Ten Tusscher & Panfilov, 2006)), with the
open-source finetwave software1. For this, our computa-
tional domain was chosen to represent a 2D slab of cardiac
tissue (isotropic), with 24 × 24 elements in size. For one
data sample, in order to activate the transmembrane poten-
tial, an excitation pulse delivered via a stimulus was applied
for 1 ms on a selected area. Each simulation represented
400 ms of a heart beat, and was intended to achieve a full
depolarisation-repolarisation cycle.

The data simulated via the Ten Tusscher – Panfilov model
with added noise were considered here as the ground truth.
The objective was then to learn the complex dynamics gener-
ated via this model using the Our framework’s name frame-
work, by combining a simplified physics description with
a deep learning component. We hypothesised that this ap-
proach will result in a low computational cost surrogate
model of the computationally intensive, biophysically de-
tailed Ten Tusscher – Panfilov model.

1https://github.com/TiNezlobinsky/Finitewave

3.2. Results

We include here our qualitative results obtained for the fore-
cast over 8 ms, after assimilating only one first frame of
dynamics (see Fig. 2). These first 8 ms (i.e., the action po-
tential upstroke) represent an important part of the cardiac
dynamics, ranging from the earliest depolarisation phase
to the full depolarisation phase. Importantly, one can ob-
serve a very good agreement between the ground truth and
the forecast transmembrane potentials generated by Our
framework’s name, as illustrated in Figure 3. The effect
of the correction term introduced by Fd is clearly visible.
Moreover, in Figure 3(b), one can also observe that Our
framework’s name framework achieves a good precision
in transmembrane potential forecasting even when noise is
present in the data.
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Figure 2. Our framework’s name predicted dynamics for the trans-
membrane potential diffusion. Figure shows a period of 8 ms of
the forecast. Red point is the reference point for Figure 3.

Table 1 presents the mean squared error (MSE) results for
our framework on the training and validation data samples.
Note that to calculate this error, for each data sample, we
fed the model with only one initial test measurement, then
allowed the model to predict 300 ms forward without any
additional input information. Furthermore, for compari-
son, we also added two baseline models: the “incomplete”
physical model (Fp from Our framework’s name frame-
work, trained alone) and a fully data-driven model (EP-Net
2.0 (Kashtanova et al., 2021)) trained on the same dataset as
Our framework’s name described in 3.1. We clearly noticed
that Our framework’s name captured the observed dynam-
ics with good precision for a large time horizon (400 ms)
and also outperformed the physical model for every dataset.
At the same time, the pure data-driven model encountered
difficulties to learn the proper dynamics.

Generalisation ability of Our framework’s name: Planar
wave Since our objective was to train a model able to
generalise to new conditions, outside of the training envi-
ronment, we performed a test on out-of-domain data repre-
sented by planar wave dynamics (see Fig. 4). One can ob-
serve that Our framework’s name (trained on data from 3.1)
has successfully generated the forecast of the new trans-
membrane potential wave dynamics.
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Figure 3. Transmembrane potential at point (5,5) in the cardiac
slab (red point, see Fig. 2): (top) Original, (bottom) Zoom-in of
first 40 ms. Legend: ground truth (GT), Our framework’s name,
physical (Fp) and data-driven (Fd) component of Our framework’s
name.
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Figure 4. Our framework’s name predicted dynamics for the trans-
membrane potential diffusion of plannar wave. The frames show
a period of 8 ms of forecast obtained without re-training the Our
framework’s name framework.

4. Conclusion
We have presented the Our framework’s name framework
for modeling complex cardiac electrophysiology dynamics
via a surrogate model combining simplified physics and
deep neural network. We demonstrated that this framework

Table 1. Mean-squared error, MSE (x 10−3) of the normalised
transmembrane potential (adimensional) forecasting (forecasting
horizon of 400 ms). Baseline models: the Physical model (2) and
a fully data-driven model (EP-Net 2.0 (Kashtanova et al., 2021))
trained on the same dataset as Our framework’s name. Out-of-
domain tests: Plannar wave.

Method Training
data

Validation
data

Out-of-
domain
test

Our frame-
work’s name

2.54 2.54 4.2

framework
with ResNet
(||Fd||2)

(0.47) (0.472) (0.4)

Our frame-
work’s name

2.5 2.5 4.4

framework
with ConvNet
(||Fd||2)

(0.81) (0.8) (1)

Physical
model

5.7 5.6 4.6

Data-driven
model

10 10 100

is able to reproduce with good precision the dynamics simu-
lated by the Ten Tusscher – Noble – Noble – Panfilov ionic
model, even using a simplified electrophysiology model as
a physical component of the framework. Such framework
opens up possibilities in order to introduce prior knowledge
in deep learning approaches through explicit equations and
to correct model errors from data.

Our current work is the evaluations of this framework on
more challenging settings (such as, presence of anisotropic
depolarisation wave propagation and various conduction
velocities in the cardiac tissue slab, as well as, the real data
applications), which were left out of scope in this paper.

Broader impact
Modelling complex systems like the human heart has made
great progress over the last decades. However, it is difficult
to improve the realism of such models even with detailed
measurements, as it requires to modify complex sets of equa-
tions in order to change their dynamics as well as to find sets
of parameters that enable relevant simulations. In this work,
we presented a fast physics-based deep learning framework
to learn complex cardiac electrophysiology dynamics from
data. Its coupled architecture allows the training on data of
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different complexity and origin. Therefore, this framework
opens up several possibilities in order to introduce prior
knowledge in deep learning approaches through explicit
equations, as well as to correct the physical model errors
from assimilated data. That may improve cardiac electro-
physiology modeling by providing a robust biophysical tool
for predictions.
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